当前位置: 首页 > news >正文

卷积神经网络-池化层

卷积神经网络-池化层

池化层(Pooling Layer)是深度学习神经网络中的一个重要组成部分,通常用于减少特征图的空间尺寸,从而降低模型复杂度和计算量,同时还能增强模型的不变性和鲁棒性。

池化操作通常在卷积神经网络(CNN)的卷积层之后使用,其主要目的有两个:

  1. 降维: 通过减少特征图的空间尺寸,可以减少模型的参数数量和计算量,从而加速模型的训练和推理过程。

  2. 特征不变性: 池化操作能够提取特征的局部不变性,即使输入数据发生轻微的平移或变形,池化层仍然能够识别出相同的特征。

常见的池化操作有两种:

  1. 最大池化(Max Pooling): 在每个池化窗口中选择最大值作为输出。例如,2x2的最大池化会选择4个值中的最大值。

  2. 平均池化(Average Pooling): 在每个池化窗口中计算所有值的平均值作为输出。

池化层的工作原理如下:

  • 定义一个池化窗口大小(例如2x2或3x3)和步长(stride)。
  • 在输入特征图上滑动池化窗口,根据窗口内的值进行池化操作(最大或平均)。
  • 输出一个降维后的特征图。

例如,一个2x2的最大池化层会将每个2x2的方块区域中的4个值中的最大值作为一个单独的值输出到下一层。

池化层在CNN中起到了非常重要的作用,可以有效地减少模型的复杂度,提高模型的计算效率,并增强模型对输入数据的不变性和鲁棒性。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

卷积神经网络-池化层

卷积神经网络-池化层 池化层(Pooling Layer)是深度学习神经网络中的一个重要组成部分,通常用于减少特征图的空间尺寸,从而降低模型复杂度和计算量,同时还能增强模型的不变性和鲁棒性。 池化操作通常在卷积神经网络&am…...

【干货集】C# XmlHelper帮助类操作Xml文档的通用方法汇总

前言 该篇文章主要总结的是自己平时工作中使用频率比较高的Xml文档操作的一些常用方法和收集网上写的比较好的一些通用Xml文档操作的方法(主要包括Xml序列化和反序列化,Xml文件读取,Xml文档节点内容增删改的一些通过方法)。当然可…...

Coursera自然语言处理专项课程04:Natural Language Processing with Attention Models笔记 Week01

Natural Language Processing with Attention Models Course Certificate 本文是学习这门课 Natural Language Processing with Attention Models的学习笔记,如有侵权,请联系删除。 文章目录 Natural Language Processing with Attention ModelsWeek 01…...

mysql MHA高可用

目录 工作原理 Node(节点) Manager(管理器) Node和Manager的协作 故障转移流程 优势 配置和管理 配置主从复制 MHA实现高可用 MySQL Master High Availability(MHA)是一个开源的高可用性解决方案&…...

android 扫描二维码

1.在你的build.gradle文件中添加Mobile Vision库的依赖: dependencies {implementation com.google.android.gms:play-services-vision:20.1.0 } 2.创建一个新的Activity来处理扫描过程。 import android.Manifest; import android.content.pm.PackageManager; i…...

[flink 实时流基础] 输出算子(Sink)

学习笔记 Flink作为数据处理框架,最终还是要把计算处理的结果写入外部存储,为外部应用提供支持。 文章目录 **连接到外部系统****输出到文件**输出到 Kafka输出到 mysql自定义 sink 连接到外部系统 Flink的DataStream API专门提供了向外部写入数据的方…...

case语句

Oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 CASE 语句的执行方式与 IF...THEN...ELSIF 语句的执行方式类似,但是它是通过一个表达式的值来决定执行哪个分支 CASE 选择器表达式 WHEN 条件 1 THEN 语句序列 …...

全国加油站分布数据/停车场分布/公园分布/景区分布/保护区分布/poi感兴趣点

加油站是指为汽车和其它机动车辆服务的、零售汽油和机油的补充站,一般为添加燃料油、润滑油等。由于加油站所销售的石油商品具有易燃爆、易挥发、易渗漏、易集聚静电荷的特性,故加油站以“安全”为第一准则。在加油站内严禁烟火,严禁从事可能…...

单片机简介(一)

51单片机 一台能够运行的计算机需要CPU做运算和控制,RAM做数据存储,ROM做程序存储,还有输入/输出设备(串行口、并行输出口等),这些被分为若干块芯片,安装在主板(印刷线路板&#xf…...

Naiveui将message挂载到axios拦截器

最近在做项目,需要将后端的请求结果打印出来 但是想着,要是这样一个一个手动引入naiveui的msg,那不得累死 于是灵机一动,想着既然所有接口要通过拦截器,为什么不将msg写在拦截器呢 一、定义一个消息挂载文件 // The…...

MySQL、Oracle查看字节和字符长度个数的函数

目录 0. 总结1. MySQL1.1. 造数据1.2. 查看字符/字节个数 2. Oracle2.1. 造数据2.2. 查看字符/字节个数 0. 总结 databasecharbyteMySQLchar_length()length()Oraclelength()lengthB() 1. MySQL 1.1. 造数据 sql drop table if exists demo; create table demo (id …...

第五篇:3.4 用户归因和受众(User attribution and audience) - IAB/MRC及《增强现实广告效果测量指南1.0》

翻译计划 第一篇概述—IAB与MRC及《增强现实广告效果测量指南》之目录、适用范围及术语第二篇广告效果测量定义和其他矩阵之- 3.1 广告印象(AD Impression)第三篇广告效果测量定义和其他矩阵之- 3.2 可见性 (Viewability)第四篇广…...

ES6: class类

类 class 面相对象class关键字创建类关于类的继承 面相对象 一切皆对象。 举例: 操作浏览器要使用window对象;操作网页要使用document对象;操作控制台要使用console对象; ES6中增加了类的概念,其实ES5中已经可以实现类…...

[中级]软考_软件设计_计算机组成与体系结构_08_输入输出技术

输入输出技术 前言控制方式考点往年真题 前言 输入输出技术就是IO技术 控制方式 程序控制(查询)方式:分为无条件传送和程序查询方式两种。 方法简单,硬件开销小,但I/O能力不高,严重影响CPU的利用率。 程序中断方式&#xff1…...

2024-04-04 问AI: 在深度学习中,微调是什么?

文心一言 在深度学习中,微调(Fine-tuning)是一种训练策略,特别针对预训练模型进行。预训练模型通常是在大规模无标注数据上通过自监督学习得到的,它们已经具备了对一般自然语言结构或视觉特征的良好理解能力。微调则是…...

db2数据仓库集群的搭建

db2数据仓库集群的搭建 DB2 集群的搭建通常涉及到多个环节,包括网络配置、DB2 软件安装、集群配置和数据库创建等。以下是搭建DB2集群的基本步骤,并不是实际的命令和配置,因为每个环境的具体配置可能会有所不同。 1、网络配置:确…...

Linux ARM平台开发系列讲解(u-boot篇) 5.1 u-boot的启动流程分析(ARMv8-a)

1. 概述 对于嵌入式来说,bootload对于开发人员来说并不陌生,但是在不同芯片架构中,bootload程序所做的一些操作是有所不同的,比如常见的STM32 Cotex-M和RK3568 之间的启动流程所做的操作是有所不同的。本小节就来概述一下U-boot的启动流程: 注意:本章节中的源码我大多数…...

ST表(数据结构中的问题)

RMQ问题 RMQ问题指对于数值,每次给一个区间[l,r],要求返回区间区间的最大值或最小值 也就是说,RMQ就是求区间最值的问题 对于RMQ问题,容易想到一种O(n)的方法,就是用i直接遍历[l,r]区间&…...

一、OpenCV(C#版本)环境搭建

一、Visual Studio 创建新项目 二、选择Windows窗体应用(.NET Framework) 直接搜索模板:Windows窗体应用(.NET Framework) 记得是C#哈,别整成VB(Visual Basic)了 PS:若搜索搜不到,直接点击安装多个工具和…...

ubuntu远程服务部署,Docker,蓝牙无线局域网,SSH,VNC,xfce4,NextTerminal,宝塔,NPS/NPC,gost,openwrt

SSH服务 apt update apt upgrade -y apt install -y openssh-server/etc/ssh/sshd_config PermitRootLogin yesDocker curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun apt install -y docker-compose宝塔 wget -O install.sh https://download.bt.cn…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂&#xff…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

Java编程之桥接模式

定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...

Windows 下端口占用排查与释放全攻略

Windows 下端口占用排查与释放全攻略​ 在开发和运维过程中,经常会遇到端口被占用的问题(如 8080、3306 等常用端口)。本文将详细介绍如何通过命令行和图形化界面快速定位并释放被占用的端口,帮助你高效解决此类问题。​ 一、准…...