java算法day45 | 动态规划part07 ● 70. 爬楼梯 (进阶) ● 322. 零钱兑换 ● 279.完全平方数
70. 爬楼梯 (进阶)
题目描述:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
输入描述:输入共一行,包含两个正整数,分别表示n, m
输出描述:输出一个整数,表示爬到楼顶的方法数。
输入示例:3 2
输出示例:3
提示:
当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。
此时你有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶段
1 阶 + 2 阶
2 阶 + 1 阶
-
确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。 -
确定递推公式
在动态规划:494.目标和 (opens new window)、 动态规划:518.零钱兑换II (opens new window)、动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]
那么递推公式为:dp[i] += dp[i - j] -
dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。
下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果 -
确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!
所以需将target放在外循环,将nums放在内循环。
每一步可以走多次,这是完全背包,内循环需要从前向后遍历。 -
举例来推导dp数组
import java.util.Scanner;public class Main{public static void main(String[] args){Scanner in=new Scanner(System.in);int n=in.nextInt();int m=in.nextInt();int[] dp=new int[n+1];dp[0]=1;for(int j=1;j<=n;j++){for(int i=0;i<=m;i++){if(j>=i){dp[j]=dp[j]+dp[j-i];}}}System.out.println(dp[n]);}
}
时间复杂度:O(mn)
空间复杂度:O(n)
322. 零钱兑换
动规五部曲分析如下:
-
确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j] -
确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); -
dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
其他下标对应的数值呢?
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。
所以下标非0的元素都是应该是最大值。 -
确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
所以本题并不强调集合是组合还是排列。
综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。 -
举例推导dp数组
class Solution {public int coinChange(int[] coins, int amount) {int max=Integer.MAX_VALUE;int[] dp=new int[amount+1];for(int i=0;i<dp.length;i++){dp[i]=max;}dp[0]=0;for(int i=0;i<coins.length;i++){for(int j=coins[i];j<=amount;j++){if(dp[j-coins[i]]!=max){//只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要dp[j]=Math.min(dp[j],dp[j-coins[i]]+1);}}}return dp[amount]==max?-1:dp[amount];}
}
时间复杂度: O(n * amount),其中 n 为 coins 的长度
空间复杂度: O(amount)
279.完全平方数
动规五部曲分析如下:
-
确定dp数组(dp table)以及下标的含义
dp[j]:和为j的完全平方数的最少数量为dp[j] -
确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]); -
dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。
非0下标的dp[j]应该是多少呢?
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。 -
确定遍历顺序
我们知道这是完全背包,
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
class Solution {public int numSquares(int n) {int max = Integer.MAX_VALUE;int[] dp = new int[n + 1];for (int j = 0; j <= n; j++) {//初始化dp[j] = max;}dp[0]=0;for(int i=1;i*i<=n;i++){int weight=i*i;for(int j=weight;j<=n;j++){dp[j]=Math.min(dp[j],dp[j-weight]+1);}}return dp[n];}
}
时间复杂度: O(n * √n)
空间复杂度: O(n)
相关文章:

java算法day45 | 动态规划part07 ● 70. 爬楼梯 (进阶) ● 322. 零钱兑换 ● 279.完全平方数
70. 爬楼梯 (进阶) 题目描述: 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬至多m (1 < m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数。 输入描述:输入…...

HuggingFace踩坑记录-连不上,根本连不上
学习 transformers 的第一步,往往是几句简单的代码 from transformers import pipelineclassifier pipeline("sentiment-analysis") classifier("We are very happy to show you the 🤗 Transformers library.") ""&quo…...
面试题:Spring Boot Starter的功能与使用场景
Spring Boot Starter 是 Spring Boot 框架为了简化项目的初始化和配置工作而设计的一种模块化依赖管理方式。它主要具有以下几个关键功能和使用场景: 功能: 1. 依赖管理每个 Starter 都是一组相关的依赖项集合,这些依赖项都是为了实现特定功能…...

上位机图像处理和嵌入式模块部署(qmacvisual之n点标定)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 工业场景中,很多时候图像是用来做测量的。虽然我们很希望载台是平的,摄像头是正对着拍摄物体的,但是运行时间长…...

Francek Chen 的128天创作纪念日
目录 Francek Chen 的128天创作纪念日机缘收获日常成就憧憬 Francek Chen 的128天创作纪念日 Francek Chen 的个人主页 机缘 不知不觉的加入CSDN已有两年时间了,最初我第一次接触CSDN技术社区是在2022年4月的时候,通过学长给我们推荐了几个IT社区平台&a…...
PyTorch之Torch Script的简单使用
一、参考资料 TorchScript 简介 Torch Script Loading a TorchScript Model in C TorchScript 解读(一):初识 TorchScript libtorch教程(一)开发环境搭建:VSlibtorch和Qtlibtorch 二、Torch Script模型格…...

vscode 连接远程服务器 服务器无法上网 离线配置 .vscode-server
离线配置 vscode 连接远程服务器 .vscode-server 1. .vscode-server下载 使用vscode连接远程服务器时会自动下载配置.vscode-server文件夹,如果远程服务器无法联网,则需要手动下载 1)网址:https://update.code.visualstudio.com…...

arm开发板移植工具mkfs.ext4
文章目录 一、前言二、手动安装e2fsprogs1、下载源码包2、解压源码3、配置4、编译5、安装 三、移植四、验证五、总结 一、前言 在buildroot菜单中,可以通过勾选e2fsprogs工具来安装mkfs.ext4工具: Target packages -> Filesystem and flash utilit…...

某盾滑块拼图验证码增强版
介绍 提示:文章仅供交流学习,严禁用于非法用途,如有不当可联系本人删除 最近某盾新推出了,滑块拼图验证码,如下图所示,这篇文章介绍怎么识别滑块距离相关。 参数attrs 通过GET请求获取的参数attrs, 决…...
这个世界万物存在只有一种关系:博弈
$上证指数(SH000001)$ 我能给各位最大的帮助可能就是第一个从红警游戏引入了情绪周期视角的概念,而这个概念可以帮助很多人理解市场成为一种可能性,如果不理解可以重新回归游戏进行反复体验,你体验的足够多,思考的足够多ÿ…...
c#让不同的工厂生产不同的“鸭肉”
任务目标 实现对周黑鸭工厂的产品生产统一管理,主要产品包括鸭脖和鸭翅。武汉工厂能生生产鸭脖和鸭翅,南京工厂只能生产鸭翅,长沙工厂只能生产鸭脖。 分析任务 我们需要有武汉工厂、南京工厂、长沙工厂的类,类中需要实现生产鸭…...

大数据分析与内存计算——Spark安装以及Hadoop操作——注意事项
一、Spark安装 1.相关链接 Spark安装和编程实践(Spark3.4.0)_厦大数据库实验室博客 (xmu.edu.cn) 2.安装Spark(Local模式) 按照文章中的步骤安装即可 遇到问题:xshell以及xftp不能使用 解决办法: 在…...

论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection
文章目录 RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection问题笛卡尔坐标结构图Meta-Kernel Convolution RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection 论文:https://arxiv.org/pdf/2103.10039.pdf 代码&…...

3D模型格式转换工具HOOPS Exchange如何将3D文件加载到PRC数据结构中?
HOOPS Exchange是一款高效的数据访问工具,专为开发人员设计,用于在不同的CAD(计算机辅助设计)系统之间进行高保真的数据转换和交换。由Tech Soft 3D公司开发,它支持广泛的CAD文件格式,包括但不限于AutoCAD的…...

c# wpf Template ContentTemplate
1.概要 1.1 定义内容的外观 2.2 要点分析 2.代码 <Window x:Class"WpfApp2.Window1"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schem…...
空和null是两回事
文章目录 前言 StringUtils1. 空(empty):字符串:集合: 2. null:引用类型变量:基本类型变量: 3. isBlank总结: 前言 StringUtils 提示:这里可以添加本文要记录…...

UNIAPP(小程序)每十个文章中间一个广告
三十秒刷新一次广告 ad-intervals"30" <template><view style"margin: 30rpx;"><view class"" v-for"(item,index) in 100"><!-- 广告 --><view style"margin-bottom: 20rpx;" v-if"(inde…...
pip包安装用国内镜像源
一:临时用国内源 可以在使用pip的时候加参数-i https://pypi.tuna.tsinghua.edu.cn/simple 例如:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyspider,这样就会从清华这边的镜像去安装pyspider库 清华:https://py…...

uniapp:小程序腾讯地图程序文件qqmap-wx-jssdk.js 文件一直找不到无法导入
先看问题: 在使用腾讯地图api时无法导入到qqmap-wx-jssdk.js文件 解决方法:1、打开qqmap-wx-jssdk.js最后一行 然后导入:这里是我的路径位置,可以根据自己的路径位置进行更改导入 最后在生命周期函数中输出: 运行效果…...
如何物理控制另一台电脑以及无网络用作副屏(现成设备和使用)
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 控制另一台电脑有很多方法&…...

大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...

若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

Java后端检查空条件查询
通过抛出运行异常:throw new RuntimeException("请输入查询条件!");BranchWarehouseServiceImpl.java // 查询试剂交易(入库/出库)记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...

Mysql故障排插与环境优化
前置知识点 最上层是一些客户端和连接服务,包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念,为通过安全认证接入的客户端提供线程。同样在该层上可…...
python打卡day49@浙大疏锦行
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 一、通道注意力模块复习 & CBAM实现 import torch import torch.nn as nnclass CBAM(nn.Module):def __init__…...