【图论】【分类讨论】LeetCode3017按距离统计房屋对数目
本文涉及的知识点
图论 分类讨论
本题同解
【差分数组】【图论】【分类讨论】【整除以2】3017按距离统计房屋对数目
LeetCode3017按距离统计房屋对数目
给你三个 正整数 n 、x 和 y 。
在城市中,存在编号从 1 到 n 的房屋,由 n 条街道相连。对所有 1 <= i < n ,都存在一条街道连接编号为 i 的房屋与编号为 i + 1 的房屋。另存在一条街道连接编号为 x 的房屋与编号为 y 的房屋。
对于每个 k(1 <= k <= n),你需要找出所有满足要求的 房屋对 [house1, house2] ,即从 house1 到 house2 需要经过的 最少 街道数为 k 。
返回一个下标从 1 开始且长度为 n 的数组 result ,其中 result[k] 表示所有满足要求的房屋对的数量,即从一个房屋到另一个房屋需要经过的 最少 街道数为 k 。
注意,x 与 y 可以 相等 。
示例 1:
输入:n = 3, x = 1, y = 3
输出:[6,0,0]
解释:让我们检视每个房屋对
- 对于房屋对 (1, 2),可以直接从房屋 1 到房屋 2。
- 对于房屋对 (2, 1),可以直接从房屋 2 到房屋 1。
- 对于房屋对 (1, 3),可以直接从房屋 1 到房屋 3。
- 对于房屋对 (3, 1),可以直接从房屋 3 到房屋 1。
- 对于房屋对 (2, 3),可以直接从房屋 2 到房屋 3。
- 对于房屋对 (3, 2),可以直接从房屋 3 到房屋 2。
示例 2:
输入:n = 5, x = 2, y = 4
输出:[10,8,2,0,0]
解释:对于每个距离 k ,满足要求的房屋对如下: - 对于 k == 1,满足要求的房屋对有 (1, 2), (2, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (4, 5), 以及 (5, 4)。
- 对于 k == 2,满足要求的房屋对有 (1, 3), (3, 1), (1, 4), (4, 1), (2, 5), (5, 2), (3, 5), 以及 (5, 3)。
- 对于 k == 3,满足要求的房屋对有 (1, 5),以及 (5, 1) 。
- 对于 k == 4 和 k == 5,不存在满足要求的房屋对。
示例 3:
输入:n = 4, x = 1, y = 1
输出:[6,4,2,0]
解释:对于每个距离 k ,满足要求的房屋对如下: - 对于 k == 1,满足要求的房屋对有 (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), 以及 (4, 3)。
- 对于 k == 2,满足要求的房屋对有 (1, 3), (3, 1), (2, 4), 以及 (4, 2)。
- 对于 k == 3,满足要求的房屋对有 (1, 4), 以及 (4, 1)。
- 对于 k == 4,不存在满足要求的房屋对。
分类讨论
假定x != y
不失一般性,令x < y。
则x ↔ \leftrightarrow ↔ y ,是环。房屋z1和z2,令z1 < z2 分类如下:
分类一,z1 < x ,z2 < x 。则两者经过的街道数为z2-z1。
分类二,z1,z2 ∈ \in ∈[x,y] 。min(z2-z1,y-z2+z1-x+1)。
分类三:z1,z2 > y。和分类一类似。
分类四:z1 < x ,z2 ∈ \in ∈[x,y]。 min(z2-z1,y-z2+1+(x-z1))
分类五:z1 < x ,z2 > y 。则两者经过的街道数为(z1-x)+1+(z2-y)。通过x,y中中转多花 x+1-y ,由于y > x,故多化的<=0,更优。
分类六:z1 ∈ \in ∈[x,y],z2 > y。 min(z2-z1,z1-x+1+(z2-y))
总结后的分类
新分类一:[z3,z4] 都不通过x ↔ \leftrightarrow ↔y 中转。包括分类一,分类五,及x==y。
距离为1的数量为:z4-z3。
距离为2的数量为:z4-z3-1
⋮ \vdots ⋮
新分类二:两个点都在环上,环的长度为len。则两点的合法距离只能 ∈ \in ∈[1,len/2] 原分类二。
如果len是偶数,距离len/2的点对数量为len/2,z5 → \rightarrow →z6 就是 z6 → \rightarrow →z5。
其它情况点对数量为:len。
新分类三:两个点分别在环两侧。分类五。
长度为3的点对:1。
长度为4的点对:2。
长度为5的点对:3 。
令环左侧的点数为len1,环右侧的点数为len2。计算距离为d的数量:
minl = max(0,d-3-(len2-1))
maxl = min(len1-1,d-3)
距离为d的点对数量:maxl - minl +1 。
新分类四:环上一点,一侧一点。原分类四六。
把环拆成两个,就和新分类三基本一致。

拆分成{2,1,4}和{5,6},同时拆分成{3,4} {5,6}
交点4 被计算了两次,要扣掉。
代码
核心代码
class Solution {
public:vector<long long> countOfPairs(int n, int x, int y) {m_vRet.resize(n);if (x == y) {Do1(1, n);return m_vRet;}if (x > y) {swap(x, y);}Do1(1, x - 1);const int iCycLen = y - x + 1;Do2(iCycLen);Do1(y + 1, n);Do4(iCycLen, x - 1);Do3(x - 1, 3, n - y);Do4(iCycLen, n - y);return m_vRet;}void Do1(int left, int r){for (int d = 1; d <= r - left; d++) {update(d, r - left + 1 - d);}}void Do2(int iCycLen){for (int d = 1; d <= iCycLen / 2; d++){const int cnt = ((0 == iCycLen % 2) && (iCycLen / 2 == d)) ? iCycLen / 2 : iCycLen;update(d, cnt);}}void Do3(int len1, int iMidDis, int len2){for (int d = 0; d <= len1 + len2 - 2; d++){const int minl = max(0, d - (len2 - 1));const int maxl = min(len1 - 1, d);update(d + iMidDis, maxl - minl + 1);}}void Do4(int iCycLen, int len){Do3((iCycLen+1) / 2 , 1, len);Do3(iCycLen / 2 + 1, 1, len);for (int d = 1; d <= len; d++) {update(d, -1);}}inline void update(int d, int cnt){m_vRet[d - 1] += cnt*2;}vector<long long> m_vRet;
};
测试用例
template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{int n, x, y;{Solution sln;n = 6, x = 1, y = 5;auto res = sln.countOfPairs(n, x, y);Assert(res, vector<long long>{ 12, 14, 4, 0, 0, 0 });}{Solution sln;n = 3, x = 2, y = 2;auto res = sln.countOfPairs(n, x, y);Assert(res, vector<long long>{4, 2, 0});}{Solution sln;n = 4, x = 1, y = 1;auto res = sln.countOfPairs(n, x, y);Assert(res, vector<long long>{6, 4, 2, 0});}{Solution sln;n = 5, x = 2, y = 4;auto res = sln.countOfPairs(n, x, y);Assert(res, vector<long long>{10, 8, 2, 0, 0});}{Solution sln;n = 3, x = 1, y = 3;auto res = sln.countOfPairs(n, x, y);Assert(res, vector<long long>{6, 0, 0});}{Solution sln;n = 2, x = 2, y = 2;auto res = sln.countOfPairs(n, x, y);Assert(res, vector<long long>{2, 0});}
}

扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
| 我想对大家说的话 |
|---|
| 闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
| 子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
| 如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

相关文章:
【图论】【分类讨论】LeetCode3017按距离统计房屋对数目
本文涉及的知识点 图论 分类讨论 本题同解 【差分数组】【图论】【分类讨论】【整除以2】3017按距离统计房屋对数目 LeetCode3017按距离统计房屋对数目 给你三个 正整数 n 、x 和 y 。 在城市中,存在编号从 1 到 n 的房屋,由 n 条街道相连。对所有 …...
浅谈Yum 安装和 源码安装
浅谈Yum 安装和 源码安装 本文所叙述的Linux系统是基于RedHat发行版的CentOS7 yum安装 1. 前言 我们知道在Windows上下载的安装包后缀是 .exe ,与之对应的 在 Linux下的安装包的后缀是 .rpm rpm (Red Hat Package Manager) 是红帽软件包管理器 我们在Windows电脑…...
JavaEE初阶Day 3:多线程(1)
目录 Day 3:多线程(1)1. 线程1.1 引入线程的原因1.2 线程的定义1.3 为何线程更轻量1.4 问题 2. 多线程代码2.1 继承Thread重写run2.2 通过实现Runnable接口创建线程2.3 针对2.1的变形使用匿名内部类2.4 针对Runnable创建匿名内部类2.5 使用la…...
gutil140.dll是什么?gutil140.dll无法继续执行的解决方法
gutil140.dll文件是一个动态链接库(DLL)文件,通常与Microsoft Visual Studio 2015相关联。 gutil140.dll是开发过程中使用的工具函数集合,它辅助开发人员执行常见的编程任务,如文件操作、内存分配和字符串处理等。这个…...
在CentOS 7上安装Python 3.7.7
文章目录 一、实战步骤1. 安装编译工具2. 下载Python 3.7.7安装包3. 上传Python 3.7.7安装包4. 解压缩安装包5. 切换目录并编译安装6. 配置Python环境变量7. 使配置生效8. 验证安装是否成功 二、实战总结 一、实战步骤 1. 安装编译工具 在终端中执行以下命令 yum -y groupin…...
基于SpringBoot Vue宠物领养系统
一、📝功能介绍 基于SpringBoot Vue宠物领养系统 角色:管理员、用户 当游客打开系统的网址后,首先看到的就是首页界面。在这里,游客能够看到宠物领养救助平台的导航条显示首页、宠物招领、宠物认领、 宠物论坛、宠物资讯、后台管…...
ip命令
ip a 也是ip addr简写 [rootlocalhost ~]# ip a 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00inet 127.0.0.1/8 scope host lovalid_lft forever preferred_lft…...
【Kaggle】练习赛《鲍鱼年龄预测》(上)
前言 上一篇文章,讲解了《肥胖风险的多类别预测》机器学习方面的文章,主要是多分类算法的运用,本文是一个回归的算法,本期是2024年4月份的题目《Regression with an Abalone Dataset》即《鲍鱼年龄预测》,在此分享高手…...
Ruby 之交租阶段信息生成
题目 我看了一下,这个题目应该不是什么机密,所以先放上来了。大概意思是根据合同信息生成交租阶段信息。 解答 要求是要使用 Ruby 生成交租阶段信息,由于时间比较仓促,变量名那些就用得随意了些。要点主要有下面这些:…...
RUST语言值所有权之内存复制与移动
1.RUST中每个值都有一个所有者,每次只能有一个所有者 String::from函数会为字符串hello分配一块内存 内存示例如下: 在内存分配前调用s1正常输出 在分配s1给s2后调用报错 因为s1分配给s2后,s1的指向自动失效 s1被move到s2 s1自动释放 字符串克隆使用...
【Django学习笔记(三)】BootStrap介绍
BootStrap介绍 前言正文1、BootStrap 快速了解2、初识BootStrap2.1 下载地址2.2 创建目录2.3 引入BootStrap2.4 使用BootStrap 3、BootStrap 组件&样式3.1 导航条3.2 栅格系统3.3 container3.3.1 container3.3.2 container-fluid 3.4 面板3.5 媒体对象3.6 分页3.7 图标3.7.…...
ClickHouse开发相关(UDAF)
ClickHouse开发相关(UDAF) ClickHouse介绍 ClickHouse是一个开源、高性能的列式 OLAP 数据库管理系统,用于使用 SQL 进行实时分析。 为什么需要ClickHouse UDAF? ClickHouse中已存在了许多聚合函数,绝大多数情况下已经覆盖我们的需求,但是有时候我们仍然需要自定义函数…...
MySql并发事务问题
事务 事务概念: 事务是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。 事务的特性:ACID: 小…...
Windows下Docker创建Mysql5.7
安装 下载镜像,注意,要带版本号 docker pull mysql:5.7 等下载完成执行命令: 错误命令1,直接Windows下路径: docker run --name mysql57 --restartalways -p 3306:3306 -v F:/mysqldata/data57/log:/var/log/mysql…...
Redis(性能管理、主从复制、哨兵模式)概述及部署
目录 一、性能管理 1、查看Redis内存使用 2、内存碎片率 3、跟踪内存碎片率 4、内存使用率 5、内回收key 二、Redis集群有三种模式 三、Redis主从复制 1、主从复制的概念 2、主从复制的作用 3、主从复制的流程 4、搭建Redis主从复制 1.环境准备 2.安装Redis&#…...
LabVIEW挖坑指南
一、挖坑指南 1.1、输出变量放在条件框内 错误写法: 现象:如果没进入对应的分支,输出为默认值 正常写法: 让每个分支输出的值都在预料之内。 1.2、统计耗时不准 错误写法 现象:统计出来的耗时是2000ms 正常写法&a…...
docker容器环境安装记录(MAC M1)(完善中)
0、背景 在MAC M1中搭建商城项目环境时,采用docker统一管理开发工具,期间碰到了许多环境安装问题,做个总结。 1、安装redis 在宿主机新建redis.conf文件运行创建容器命令,进行容器创建、端口映射、文件挂载、以指定配置文件启动…...
Linux 常用命令(持续更新中...)
1. ls 查看文件列表命令 语法: ls [-a -l -h] [Linux路径] -a -l -h 是可选的选项 (-h需配合-l命令一起使用)Linux路径是此命令可选的参数 ls #查看当前目录所有非隐藏文件(平铺方式显示) ls -a #查看当前目录下所有文件 …...
xss.pwnfunction-Jefff
在eval中可以直接执行命令所以直接把"直接闭合在结尾再加上一个"因为后面的"没闭和会报错 ?jeffa";alert(1);" 或 ?jeffa"-alert(1)-" -是分隔符...
java——文件上传
一、文件上传——简介 文件上传的简介:文件上传是指将本地计算机中的文件传输到网络上的服务器或另一台计算机上的过程。在 Web 开发中,文件上传通常指的是将用户通过 Web 页面提交的文件(如图像、文档、音频、视频等)传输到服务器…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
