当前位置: 首页 > news >正文

堆排序解读

在算法世界中,排序算法一直是一个热门话题。推排序(Heap Sort)作为一种基于堆这种数据结构的有效排序方法,因其时间复杂度稳定且空间复杂度低而备受青睐。本文将深入探讨推排序的原理、实现方式,以及它在实际应用中的价值。

一、算法原理

推排序利用堆这种完全二叉树结构二叉堆的介绍)进行排序。堆通常分为最大堆和最小堆,其中最大堆的父节点值总是大于或等于其子节点值,而最小堆则相反。推排序通常使用最大堆来进行排序。

推排序的基本步骤包括:

  1. 建堆:将待排序的序列构造成一个大顶堆(最大堆)。此时,整个序列的最大值就是堆顶的根节点。
  2. 堆调整:将堆顶元素与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个序列重新构造成一个堆,这样会得到n个元素中的次大值。如此反复执行,便能得到一个有序序列。
    在这里插入图片描述

二、代码实现

以下是使用Python语言实现推排序的示例代码:

def heapify(arr, n, i):"""  调整以i为根的子树,使其成为最大堆。  :param arr: 待排序的数组  :param n: 数组的长度  :param i: 当前根节点的索引  """largest = i  # 初始化最大值为根  left = 2 * i + 1  # 左子节点索引  right = 2 * i + 2  # 右子节点索引  # 如果左子节点比根大  if left < n and arr[left] > arr[largest]:largest = left# 如果右子节点比当前最大值还大if right < n and arr[right] > arr[largest]:largest = right# 如果最大值不是根if largest != i:arr[i], arr[largest] = arr[largest], arr[i]  # 交换  # 递归地调整受影响的子堆  heapify(arr, n, largest)def heap_sort(arr):"""  堆排序算法的主函数。  :param arr: 待排序的数组  """n = len(arr)# 构建最大堆  for i in range(n, -1, -1):heapify(arr, n, i)# 一个个从堆中取出元素  for i in range(n - 1, 0, -1):arr[i], arr[0] = arr[0], arr[i]  # 将当前最大的元素移到数组末尾  heapify(arr, i, 0)  # 重新调整堆  # 示例
arr = [12, 11, 13, 5, 6, 7]
heap_sort(arr)
print("排序后的数组:")
for i in range(len(arr)):print("%d" % arr[i]),

三、算法分析

推排序的时间复杂度为O(n log n),其中n是待排序元素的数量。这是因为建堆的时间复杂度为O(n),而每次调整堆(即从堆中取出最大元素并重新调整堆)的时间复杂度为O(log n)。由于需要执行n-1次这样的操作,因此总的时间复杂度为O(n log n)。

在空间复杂度方面,推排序是原地排序算法,只需要一个常量级别的额外空间来存储临时变量,因此空间复杂度为O(1)。

四、优缺点

推排序的优点在于其时间复杂度稳定且相对较低,同时空间复杂度也很低。此外,推排序是一种不稳定的排序算法,对于某些特定应用可能不是最佳选择。

然而,推排序在构建初始堆时,需要对整个数组进行遍历,这可能导致在处理小数据集时效率不如某些其他排序算法。此外,由于堆排序是一种比较排序,其性能可能受到数据特性的影响。

五、应用场景

推排序在实际应用中有着广泛的应用。由于其时间复杂度稳定且相对较低,推排序在处理大规模数据集时表现出色。它常被用于需要对大量数据进行排序的场景,如数据库查询优化、文件排序、大数据分析等。

相关文章:

堆排序解读

在算法世界中&#xff0c;排序算法一直是一个热门话题。推排序&#xff08;Heap Sort&#xff09;作为一种基于堆这种数据结构的有效排序方法&#xff0c;因其时间复杂度稳定且空间复杂度低而备受青睐。本文将深入探讨推排序的原理、实现方式&#xff0c;以及它在实际应用中的价…...

docker + miniconda + python 环境安装与迁移(详细版)

本文主要列出从安装dockerpython环境到迁移环境的整体步骤。windows与linux之间进行测试。 简化版可以参考&#xff1a;docker miniconda python 环境安装与迁移&#xff08;简化版&#xff09;-CSDN博客 目录 一、docker 安装和测试 二、docker中拉取miniconda&#xff…...

蓝桥杯刷题第八天(dp专题)

这道题有点像小学奥数题&#xff0c;解题的关键主要是&#xff1a; 有2种走法固走到第i级阶梯&#xff0c;可以通过计算走到第i-1级和第i-2级的走法和&#xff0c;可以初始化走到第1级楼梯和走到第2级楼梯。分别为f[1]1;f[2]1(11)1(2)2.然后就可以循环遍历到后面的状态。 f[i…...

【WEEK6】 【DAY1】DQL查询数据-第一部分【中文版】

2024.4.1 Monday 目录 4.DQL查询数据&#xff08;重点&#xff01;&#xff09;4.1.Data Query Language查询数据语言4.2.SELECT4.2.1.语法4.2.2.实践4.2.2.1.查询字段 SELECT 字段/* FROM 表查询全部的某某查询指定字段 4.2.2.2.给查询结果或者查询的这个表起别名&#xff08…...

Linux:权限篇

文章目录 前言1.用户2.文件的权限管理2.1 修改文件的权限2.2 修改文件的拥有者2.3 修改文件的所属组 3.file指令4.umask指令4.目录的权限管理总结 前言 Linux权限在两个地方有所体现&#xff0c;一种是使用用户&#xff1a;分为root超级用户员与普通用户。另一个是体现在文件的…...

Lua热更新(xlua)

发现错误时检查是否:冒号调用 只需要导入asset文件夹下的Plugins和Xlua这两个文件即可,别的不用导入 生成代码 和清空代码 C#调用lua using Xlua; 需要引入命名空间 解析器里面执行lua语法 lua解析器 LuaEnv 单引号是为了避免引号冲突 第二个参数是报错时显示什么提示…...

并查集(基础+带权以及可撤销并查集后期更新)

并查集 并查集是一种图形数据结构&#xff0c;用于存储图中结点的连通关系。 每个结点有一个父亲&#xff0c;可以理解为“一只伸出去的手”&#xff0c;会指向另一个点&#xff0c;初始时指向自己。一个点的根节点是该点的父亲的父亲的..的父亲&#xff0c;直到某个点的父亲…...

基于 Java 的数据结构和算法 (不定期更新)

JavaIsBestLang 数据结构 Collection 是 Java 中的接口&#xff0c;被多个泛型容器接口所实现。在这里&#xff0c;Collection 是指代存放对象类型的数据结构。 ArrayList 函数名功能size()返回 this 的长度add(Integer val)在 this 尾部插入一个元素add(int idx, Integer …...

考研回忆录【二本->211】

备考时长差不多快一年半&#xff0c;从22年的11月底开始陆陆续续地准备考研&#xff0c;因为开始的早所以整个备考过程显得压力不是很大&#xff0c;中途还去一些地方旅游&#xff0c;我不喜欢把自己绷得太紧。虽然考的不是很好&#xff0c;考完我甚至都没准备复试&#xff0c;…...

【XCPC笔记】2023 (ICPC) Jiangxi Provincial Contest——ABCIJKL 做题记录

补题 赛后gym练习及补题&#xff0c;gym链接&#xff1a;2023 (ICPC) Jiangxi Provincial Contest – Official Contest 另外&#xff0c;D题我也打算找机会学习写下&#xff0c;C题的博弈论还需要好好理解&#xff0c;感觉都是比较有趣的数学问题 补题顺序如下 补题L [Zhang …...

猫头虎分享已解决Bug || **URLError (URL错误)** 全方位解析

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …...

如何使用极狐GitLab 启用自动备份功能

本文作者&#xff1a;徐晓伟 GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 本文主要讲述了如何极狐GitLab 自…...

HTML/XML转义字符对照

特殊字符转义表 字符十进制转义字符"&quot;&&amp;<<<>>>不断开空格(non-breaking space) 最常用的转义字符列表 显示说明实体名称十进制编号半方大的空白&ensp;全方大的空白&emsp;不断行的空白格 <小于<<>大于&g…...

设计模式:组合模式示例

组合模式的典型例子通常涉及到树形结构的处理&#xff0c;下面是几个形象且易于理解的例子&#xff1a; 文件系统 在文件系统中&#xff0c;目录可以包含文件或者其他目录&#xff0c;但是从用户的角度来看&#xff0c;目录和文件都可以被“打开”或者“获取大小”。这里的目…...

普通情况和高并发时,Redis缓存和数据库怎么保持一致?

普通情况和高并发时&#xff0c;Redis缓存和数据库怎么保持一致&#xff1f; 普通情况思路 高并发时思路 Q&#xff1a;缓存和数据库怎么保持一致&#xff1f; A&#xff1a;绝对不可能保持一致的&#xff0c;在实际业务开发中&#xff0c;有一些方案可以做取舍。 实际业务中&a…...

Django -- 自动化测试

概述 测试是一种例行的、不可缺失的工作&#xff0c;用于检查你的程序是否符合预期。 测试可以划分为不同的级别。一些测试可能专注于小细节&#xff08;比如某一个模型的方法是否会返回预期的值&#xff1f;&#xff09;&#xff0c; 一些测试则专注于检查软件的整体运行是否…...

NodeJS 在Windows / Mac 上实现多版本控制

NodeJS 的多版本控制 本文介绍一下在 windows/MacOS 上 如何 切换和使用多个版本的 NodeJS。 Windows 本小节介绍一下在windows上管理不同版本的NodeJS。 nvm-windows 工具 nvm-windows 是在 windows 上管理 NodeJS 版本的一个工具。 它可以很方便的 下载、移除、查看、切…...

Web3 游戏周报(3.24-3.30)

【3.24-3.30】Web3 游戏行业动态&#xff1a; Web3 开发平台 Mirror World 在 Solana 上推出首个游戏 rollup 链 NFT 卡牌游戏 Parallel 完成 3,500 万美元融资&#xff0c;Solana Ventures 等参投 加密游戏开发公司 Gunzilla Games 完成 3,000 万美元融资 Telegram 游戏 No…...

算法思想1. 分治法2. 动态规划法3. 贪心算法4. 回溯法

目录 递归和动态的区别:空间和时间复杂度之争 递归空间复杂度低;动态时间复杂度第低...

SpringBoot+ECharts+Html 地图案例详解

1. 技术点 SpringBoot、MyBatis、thymeleaf、MySQL、ECharts 等 此案例使用的地图是在ECharts社区中查找的&#xff1a;makeapie echarts社区图表可视化案例 2. 准备条件 在mysql中创建数据库echartsdb&#xff0c;数据库中创建表t_location_count表&#xff0c;表中设置两个…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...