最小生成树
最小生成树问题是指给定一个带权的无向图,删除一些边使得这个无向图变成一棵树,并且权值之和最小。
解决此类问题的方法主要有两种:Prim算法,Kruskal算法
Prim 算法
从一个点开始,逐步扩展,每次选择权值最小的相连的边,保证不出环,直到顶点总数等于图中所有顶点个数,组成最小生成树
例题 最小生成树
P3366 【模板】最小生成树
#include<bits/stdc++.h>
using namespace std;
int fa[500005],n,m,ans,cnt;
int vis[100005],dis[100005],g[5005][5005];
void prim(){memset(vis,0,sizeof vis);memset(dis,0x3f,sizeof dis);dis[1]=0;for(int i=1;i<=n;i++){int t=-1;for(int j=1;j<=n;j++){if(!vis[j]&&(t==-1||dis[j]<dis[t])){t=j;}}if(dis[t]==0x3f3f3f3f){printf("orz\n");return ;}vis[t]=1;ans+=dis[t];for(int j=1;j<=n;j++){if(dis[j]>g[t][j]&&!vis[j]){dis[j]=g[t][j];}}}printf("%d\n",ans);
}
int main(){scanf("%d%d",&n,&m);memset(g,0x3f,sizeof g);for(int i=1;i<=m;i++){ int xx,yy,zz;scanf("%d%d%d",&xx,&yy,&zz);if(g[xx][yy]==0x3f3f3f3f){g[xx][yy]=zz;g[yy][xx]=zz;}else{g[xx][yy]=min(zz,g[xx][yy]);g[yy][xx]=min(zz,g[yy][xx]);}}prim();return 0;
}
Kruskal 算法
把所有边都从小到大排好序,从小到大逐个放入树,保证不能出环,直至树中结点总个数等于原无向图顶点数
例题 最小生成树
P3366 【模板】最小生成树
#include<bits/stdc++.h>
using namespace std;
int fa[100005],n,m,ans,cnt;
struct node{int x,y,z;
}a[200005];
int Find(int x){if(fa[x]==x){return x;}return fa[x]=Find(fa[x]);
}
bool cmp(node aa,node bb){return aa.z<bb.z;
}
int kruskal(){sort(a+1,a+m+1,cmp);for(int i=1;i<=m;i++){int xx=Find(a[i].x);int yy=Find(a[i].y);if(xx==yy){continue;}ans+=a[i].z;fa[yy]=xx;if(++cnt==n-1){return ans;}}return -1;
}
void Init(){for(int i=1;i<=n;i++){fa[i]=i;}
}
int main(){scanf("%d%d",&n,&m);Init();for(int i=1;i<=m;i++){scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);}if(kruskal()==-1){printf("orz\n");return 0;}printf("%d\n",ans);return 0;
}
Build
给定几个城镇的坐标,要让它们联通起来,在它们间
#include<bits/stdc++.h>
using namespace std;
long long fa[500005],n,ans,cnt;
struct node2{long long x,y,z;
}b[500005];
struct node{long long x,y,z;
}a[500005];
long long Find(long long x){if(fa[x]==x){return x;}return fa[x]=Find(fa[x]);
}
bool cmp1(node2 aa,node2 bb){return aa.x<bb.x;
}
bool cmp2(node2 aa,node2 bb){return aa.y<bb.y;
}
bool cmp(node aa,node bb){return aa.z<bb.z;
}
void kruskal(){sort(a+1,a+2*n+1,cmp);for(int i=1;i<=2*n;i++){long long x=a[i].x;long long y=a[i].y;long long xx=Find(x);long long yy=Find(y);if(xx==yy){continue;}fa[xx]=yy;ans+=a[i].z;cnt++;if(cnt==n-1){return ;}}
}
void Init(){for(int i=1;i<=n;i++){fa[i]=i;}
}
int main(){scanf("%lld",&n);Init();for(int i=1;i<=n;i++){ scanf("%lld%lld",&b[i].x,&b[i].y);b[i].z=i;}sort(b+1,b+n+1,cmp1);for(int i=1;i<n;i++){a[i].x=b[i].z;a[i].y=b[i+1].z;a[i].z=b[i+1].x-b[i].x;}sort(b+1,b+n+1,cmp2);for(int i=1;i<n;i++){a[i+n].x=b[i].z;a[i+n].y=b[i+1].z;a[i+n].z=b[i+1].y-b[i].y;}kruskal();printf("%lld\n",ans);return 0;
}
相关文章:
最小生成树
最小生成树问题是指给定一个带权的无向图,删除一些边使得这个无向图变成一棵树,并且权值之和最小。 解决此类问题的方法主要有两种:Prim算法,Kruskal算法 Prim 算法 从一个点开始,逐步扩展,每次选择权值…...

二维动画制作软件 Animate 2024 for mac激活版
Animate 2024 for Mac是一款功能强大的二维动画制作软件,专为Mac用户打造。它提供了丰富的动画编辑功能,使用户能够轻松创建出生动逼真的动画作品。无论是短片、广告还是游戏等应用领域,Animate 2024都能发挥出出色的表现。 软件下载…...
相对论中关于光速不变理解的补充
近几个月在物理直播间聊爱因斯坦相对论,发现好多人在理解爱因斯坦相对论关于基本假设,普遍认为光速是不变的,质能方程 中光速的光速不变的,在这里我对这个假设需要做一个补充,他是基于质能方程将光速C 在真是光速变化曲…...

面试(04)————JavaWeb
1、网络通讯部分 1.1、 TCP 与 UDP 区别? 1.2、什么是 HTTP 协议? 1.3、TCP 的三次握手,为什么? 1.4、HTTP 中重定向和请求转发的区别? 1.5、 Get 和 Post 的区别? 2、cookie 和 session 的区别&am…...

Debian12 使用 nginx 与 php8.2 使用 Nextcloud
最近将小服务器升级了下系统,使用了 debian12 的版本,正好试试 nginx 和 php-fpm 这种方式运行 Nextcloud 这个私有云的配置。 一、基本系统及应用安装 系统:debian12 x86_64 位版本最小安装,安装后可根据自己需求安装一些工具&…...

Java设计模式:代理模式的静态和动态之分(八)
码到三十五 : 个人主页 心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 ! 在软件设计中,代理模式是一种常用的设计模式,它为我们提供了一种方式来控制对原始对象的访问。在Java中&a…...

【论文通读】AgentStudio: A Toolkit for Building General Virtual Agents
AgentStudio: A Toolkit for Building General Virtual Agents 前言AbstractMotivationFramework评估GUI GroudingReal-World Cross-Application Benchmark Suite Conclusion 前言 来自昆仑万维的一篇智能体环境数据大一统框架工作,对未来计算机智能体的发展具有指…...
wordvect嵌入和bert嵌入的区别
Word2Vec 嵌入和 BERT 嵌入之间有几个关键区别: 训练方式: Word2Vec:Word2Vec 是一个基于神经网络的词嵌入模型,它通过训练一个浅层的神经网络来学习单词的分布式表示。它有两种训练方式:连续词袋模型(CBOW…...

渗透测试练习题解析 5(CTF web)
1、[安洵杯 2019]easy_serialize_php 1 考点:PHP 反序列化逃逸 变量覆盖 【代码审计】 通过 GET 的方式获取参数 f 的值,传递给变量 function 定义一个过滤函数,过滤掉特定字符(用空字符替换) 下面的代码其实没什么用…...

PCA(Principal Component Analysis,主成分分析)
PCA(Principal Component Analysis,主成分分析)是一种在数据分析中广泛应用的统计方法,主要用于数据降维、可视化和去噪。以下是对PCA的发展史、工作原理以及理论基础的详细解释: Principal Component Analysis 一、PC…...

干货 | 探索CUTTag:从样本到文库,实验步步为营!
CUT&Tag(Cleavage Under Targets and Tagmentation)是一种新型DNA-蛋白互作研究技术,主要用于研究转录因子或组蛋白修饰在全基因组上的结合或分布位点。相比于传统的ChIP-seq技术,CUT&Tag反应在细胞内进行,创新…...

提质不增本,降本不降质
#公益巡讲# #质量万里行# 公开课、沙龙活动...

数据结构---顺序表实现
目录 1.顺序表 2.动态顺序表的实现 (4)顺序表初始化 (5)顺序表销毁 (6)顺序表的插入 a.尾插 b.头插 (7)顺序表的删除 a.尾删 b.头删 (8)指定位置之…...
python docx 添加动态表格
在Python中,使用python-docx库可以创建Word文档并添加动态表格。以下是一个简单的例子,演示如何创建一个包含动态内容的表格: from docx import Document# 创建一个Word文档 document Document()# 添加一个标题 document.add_heading(动态表…...

git配置多SSH
目的: 一台电脑可以让github、gitee等账号同时存在,让不同账号配置不同的密钥 第一步:创建不同平台的SSH公钥 执行命令: ssh-keygen -t rsa -C "对应仓库邮箱地址" -f ~/.ssh/id_rsa.github 如果执行上面的命令&…...

IDEA连接SqlServer数据库
目录 下载jar包 下载sqljdbc_12.6压缩包 解压 导入IDEA 新建文件夹 复制粘贴进JDBC文件夹并设为library 编写类及方法 代码 下载jar包 以sqljdbc_12.6为例 下载sqljdbc_12.6压缩包 最新地址:sqljdbc 官方最新地址 解压 解压即用 导入IDEA 新建文件夹 复制…...

LeetCode 378 有序矩阵中第K小的元素
题目信息 LeetoCode地址: . - 力扣(LeetCode) 题解内容大量转载于:. - 力扣(LeetCode) 题目理解 题意很直观,就是求二维矩阵中所有元素排序后第k小的数。 最小堆写法 该写法不再赘述,维护…...

Vue3(domdiff)最长递归子序列求解简易版(超简单)
Vue3(domdiff)最长递归子序列求解简易版 ⚠️ 关键词(每一个都需要理解)js 代码实现写完感想欢迎关注 ⚠️ 关键词(每一个都需要理解) 动态规划(O(N^2))(不提倡…...
LLaMA-Factory+qwen多轮对话微调
LLaMA-Factory地址:https://github.com/hiyouga/LLaMA-Factory/blob/main/README_zh.md qwen地址:https://huggingface.co/Qwen/Qwen-7B-Chat/tree/main 数据准备 数据样例 [ {"id": "x3959", "conversations": [{&qu…...
邦芒面试:如何在面试中巧妙回答自己的缺点
在面试中,被问及自己的缺点时,如何巧妙回答是一门学问。恰当的回答不仅能够展示你的自我认知,还能让面试官看到你的成长潜力和积极态度。 首先,切忌谈一些看似缺点实则优点的话题,如追求完美、待人接物太客气等。这些…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

如何做好一份技术文档?从规划到实践的完整指南
如何做好一份技术文档?从规划到实践的完整指南 🌟 嗨,我是IRpickstars! 🌌 总有一行代码,能点亮万千星辰。 🔍 在技术的宇宙中,我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...