万得AI算法工程师一面面试题6道|含解析
节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。
今天分享一位面试题,喜欢点赞、收藏、关注。文末参与技术讨论。
问题 1、dataloader和dataset的区别
DataLoader 和 Dataset 是 PyTorch 中用于处理数据的两个重要概念:
Dataset 是一个抽象类,用于表示数据集,通常需要用户自定义,包含了数据的读取、预处理等操作。
DataLoader 是一个数据加载器,用于将 Dataset 中的数据按照指定的 batch_size、shuffle 等参数加载到模型中进行训练或推理。DataLoader 可以自动实现多线程数据加载和数据批处理等功能。
问题 2、深度学习中,常见的损失函数有哪些?
均方误差损失函数 (Mean Squared Error, MSE)
交叉熵损失函数 (Cross Entropy Loss)
感知损失函数 (Perceptron Loss)
Hinge Loss
KL 散度损失函数 (Kullback-Leibler Divergence Loss)
Huber Loss
余弦相似度损失函数 (Cosine Similarity Loss) 等。
问题 3、介绍下yolov8算法的模块。
yolov8算法的模块:
Backbone:通常使用一些预训练的卷积神经网络 (CNN),如Darknet、ResNet、EfficientNet 等,用于提取图像的特征。
Neck:用于进一步处理和整合特征,通常包括一些卷积层和池化层等。
Head:目标检测的关键部分,包括预测目标的边界框、类别以及置信度等。
问题 4、介绍下什么是nms
NMS (Non-Maximum Suppression,非极大值抑制) 是目标检测领域常用的一种算法,用于去除检测到的重叠较多的边界框,保留最具代表性的边界框。其核心思想是保留置信度最高的边界框,并去除与其 IoU (Intersection over Union) 超过阈值的其他边界框。
问题 5、CV中数据增强的方法有哪些?
在计算机视觉中,常用的数据增强方法包括:
随机裁剪 (Random Cropping)
随机翻转 (Random Flipping)
随机旋转 (Random Rotation)
色彩变换 (Color Jittering)
尺度缩放 (Scale Augmentation)
平移 (Translation)
对比度增强 (Contrast Enhancement)
亮度调整 (Brightness Adjustment)
添加噪声 (Adding Noise) 等。
问题6、讲一下batchnorm的计算过程。****
1)对于每个批次的输入数据,计算其均值和方差。
2)对输入数据进行标准化,即减去均值并除以标准差。
3)使用学习参数(拉伸因子和偏移量)进行线性变换,使得数据重新具有适当的比例和偏移。
BatchNorm 可以在训练过程中通过批次数据的统计信息来进行标准化,也可以在推理过程中使用移动平均来估计整个数据集的统计信息,以实现更好的泛化能力和稳定性。
技术交流
前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~
我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。
方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流+CSDN
用通俗易懂的方式讲解系列
-
重磅来袭!《大模型面试宝典》(2024版) 发布!
-
重磅来袭!《大模型实战宝典》(2024版) 发布!
-
用通俗易懂的方式讲解:不用再找了,这是大模型最全的面试题库
-
用通俗易懂的方式讲解:这是我见过的最适合大模型小白的 PyTorch 中文课程
-
用通俗易懂的方式讲解:一文讲透最热的大模型开发框架 LangChain
-
用通俗易懂的方式讲解:基于 LangChain + ChatGLM搭建知识本地库
-
用通俗易懂的方式讲解:基于大模型的知识问答系统全面总结
-
用通俗易懂的方式讲解:ChatGLM3 基础模型多轮对话微调
-
用通俗易懂的方式讲解:最火的大模型训练框架 DeepSpeed 详解来了
-
用通俗易懂的方式讲解:这应该是最全的大模型训练与微调关键技术梳理
-
用通俗易懂的方式讲解:Stable Diffusion 微调及推理优化实践指南
-
用通俗易懂的方式讲解:大模型训练过程概述
-
用通俗易懂的方式讲解:专补大模型短板的RAG
-
用通俗易懂的方式讲解:大模型LLM Agent在 Text2SQL 应用上的实践
-
用通俗易懂的方式讲解:大模型 LLM RAG在 Text2SQL 上的应用实践
-
用通俗易懂的方式讲解:大模型微调方法总结
-
用通俗易懂的方式讲解:涨知识了,这篇大模型 LangChain 框架与使用示例太棒了
-
用通俗易懂的方式讲解:掌握大模型这些优化技术,优雅地进行大模型的训练和推理!
-
用通俗易懂的方式讲解:九大最热门的开源大模型 Agent 框架来了
相关文章:
万得AI算法工程师一面面试题6道|含解析
节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 今天…...
蓝桥杯23年第十四届省赛-异或和之和|拆位、贡献法
题目链接: 蓝桥杯2023年第十四届省赛真题-异或和之和 - C语言网 (dotcpp.com) 1.异或和之和 - 蓝桥云课 (lanqiao.cn) 参考题解: 蓝桥杯真题讲解:异或和之和 (拆位、贡献法)-CSDN博客 洛谷P9236 [蓝桥杯 2023 省 A]…...
Unity进阶之路(1)回顾与思考
首先呢,博主在这里先反思一下自己这几个月,其实并没有多少进步。 在寒假中,博主几乎是独立编写了一个小程序的完整UI和一个Uniapp的雏形。那段时间是博主生产力最高的时间段。几乎是每天8点起来开始编写代码,晚上一直忙到很晚。 …...

【C语言】——指针八:指针运算笔试题解析
【C语言】——指针八:指针运算笔试题解析 一、题一二、题二三、题三四、题四五、题五六、题六七、题七 一、题一 //程序输出结果是什么 int main() {int a[5] { 1,2,3,4,5 };int* ptr (int*)(&a 1);printf("%d, %d", *(a 1), *(ptr - 1));return…...

JVM字节码与类的加载——class文件结构
文章目录 1、概述1.1、class文件的跨平台性1.2、编译器分类1.3、透过字节码指令看代码细节 2、虚拟机的基石:class文件2.1、字节码指令2.2、解读字节码方式 3、class文件结构3.1、魔数:class文件的标识3.2、class文件版本号3.3、常量池:存放所…...

小程序如何通过公众号发送新订单提醒
当客户在小程序上下单后,公众号会发送订单通知,这可以让管理员及时获知用户下单情况,方便及时处理订单和提供服务。下面是具体介绍如何设置公众号来发送订单服务通知。 方式一:通过采云公众号发送订单通知 此种方式是默认的通知…...

聊聊公众号最让我不爽的两个痛点
本文首发于 Python猫 微信公众号最让我不爽的地方有两个,而且有很多人虽然也不爽,却不知道原因。 本文想聊聊公众号的两个痛点,因为我经常收到私信问这两个问题,本文算是一次集中的回复吧。 第一个不爽的点是公众号会屏蔽外链&…...

【leetCode】2810. 故障键盘
文章目录 [2810. 故障键盘](https://leetcode.cn/problems/faulty-keyboard/)思路一:模拟代码:思路二:双端队列代码: 2810. 故障键盘 思路一:模拟 用StringBuilder来拼贴字符遍历字符串,如果遇到i,对拼贴好…...

xshell7连接ubuntu18.04
🎡导航小助手🎡 1.查看ubuntu IP2.开启openssh-server3.静态IP设置4.Xshell连接 1.查看ubuntu IP 输入下面命令查看IP ifconfig -a可以看到网卡是ens33,IP为192.168.3.180。 2.开启openssh-server 1、执行下句,下载SSH服务 s…...
真正的力量:实力与人际关系的平衡艺术
在当今社会,人们常常在追求个人发展和建立良好人际关系之间寻找平衡。有一种观点认为,“没有实力,就不要对别人好。不然,很容易被定义为讨好。”这句话在一定程度上揭示了实力与人际关系之间的微妙联系。本文将探讨这一观点的深层…...

Acwing.1388 游戏(区间DP对抗思想)
题目 玩家一和玩家二共同玩一个小游戏。 给定一个包含 N个正整数的序列。 由玩家一开始,双方交替行动。 每次行动可以在数列的两端之中任选一个数字将其取走,并给自己增加相应数字的分数。(双初始分都是 0分) 当所有数字都被…...

Numpy数组转换为csv文件
参考:Converting Numpy Array to CSV 在数据分析和处理中,经常会涉及到将数据从一个形式转换为另一个形式的操作。 其中,将Numpy数组转换为csv文件是一种常见的操作,因为csv文件是一种通用的数据存储格式,方便与其他软…...
替代安全指标(Surrogate Safety Measures (SSM) )
替代安全措施(Surrogate Safety Measures (SSM) )用于从数据中寻找接近碰撞,或可能发生(但实际没有发生)的碰撞事件。 SSM的两个合格标准: (1)它应该来自与碰撞直接相关的交通冲突&…...

usb_camera传输视频流编码的问题记录!
前言: 大家好,今天给大家分享的内容是,一个vip课程付费的朋友,在学习过程中遇到了一个usb采集的视频数据流,经过ffmpeg编码,出现了问题: 问题分析: 其实这个问题不难,关键…...

Linux安装nginx保姆级教程
文章目录 前言一、nginx安装(保姆级教程)1.安装nginx依赖2.安装wget3.创建nginx安装目录4.下载nginx5.查看下载好的nginx6.解压缩7.查看当前目录下的文件→进入nginx-1.8.0目录→查看当前目录下的文件8.安装nginx9.查看nginx安装目录并启动nginx10.网络请…...

leetcode-判断二分图
. - 力扣(LeetCode) 存在一个 无向图 ,图中有 n 个节点。其中每个节点都有一个介于 0 到 n - 1 之间的唯一编号。给你一个二维数组 graph ,其中 graph[u] 是一个节点数组,由节点 u 的邻接节点组成。形式上,…...

算法day30 回溯6
332 重新安排行程 给你一份航线列表 tickets ,其中 tickets[i] [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。 所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK …...

分享three.js实现乐高小汽车
前言 Web脚本语言JavaScript入门容易,但是想要熟练掌握却需要几年的学习与实践,还要在弱类型开发语言中习惯于使用模块来构建你的代码,就像小时候玩的乐高积木一样。 应用程序的模块化理念,通过将实现隐藏在一个简单的接口后面&a…...
gpt的构造和原理
gpt是序列预测模型。 问答是通过确定问答格式样本训练出来的!比如“Q:xxxx.A:xxx"本质还是根据前面的序列预测后面的序列。在自回归训练过程中,文本序列(可能包含问题和紧随其后的答案)被视为一个整体输入到模型…...

基于springboot实现教师人事档案管理系统项目【项目源码+论文说明】计算机毕业设计
基于springboot实现IT技术交流和分享平台系统演示 摘要 我国科学技术的不断发展,计算机的应用日渐成熟,其强大的功能给人们留下深刻的印象,它已经应用到了人类社会的各个层次的领域,发挥着重要的不可替换的作用。信息管理作为计算…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...