万得AI算法工程师一面面试题6道|含解析
节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。
今天分享一位面试题,喜欢点赞、收藏、关注。文末参与技术讨论。
问题 1、dataloader和dataset的区别
DataLoader 和 Dataset 是 PyTorch 中用于处理数据的两个重要概念:
Dataset 是一个抽象类,用于表示数据集,通常需要用户自定义,包含了数据的读取、预处理等操作。
DataLoader 是一个数据加载器,用于将 Dataset 中的数据按照指定的 batch_size、shuffle 等参数加载到模型中进行训练或推理。DataLoader 可以自动实现多线程数据加载和数据批处理等功能。
问题 2、深度学习中,常见的损失函数有哪些?
均方误差损失函数 (Mean Squared Error, MSE)
交叉熵损失函数 (Cross Entropy Loss)
感知损失函数 (Perceptron Loss)
Hinge Loss
KL 散度损失函数 (Kullback-Leibler Divergence Loss)
Huber Loss
余弦相似度损失函数 (Cosine Similarity Loss) 等。
问题 3、介绍下yolov8算法的模块。
yolov8算法的模块:
Backbone:通常使用一些预训练的卷积神经网络 (CNN),如Darknet、ResNet、EfficientNet 等,用于提取图像的特征。
Neck:用于进一步处理和整合特征,通常包括一些卷积层和池化层等。
Head:目标检测的关键部分,包括预测目标的边界框、类别以及置信度等。
问题 4、介绍下什么是nms
NMS (Non-Maximum Suppression,非极大值抑制) 是目标检测领域常用的一种算法,用于去除检测到的重叠较多的边界框,保留最具代表性的边界框。其核心思想是保留置信度最高的边界框,并去除与其 IoU (Intersection over Union) 超过阈值的其他边界框。
问题 5、CV中数据增强的方法有哪些?
在计算机视觉中,常用的数据增强方法包括:
随机裁剪 (Random Cropping)
随机翻转 (Random Flipping)
随机旋转 (Random Rotation)
色彩变换 (Color Jittering)
尺度缩放 (Scale Augmentation)
平移 (Translation)
对比度增强 (Contrast Enhancement)
亮度调整 (Brightness Adjustment)
添加噪声 (Adding Noise) 等。
问题6、讲一下batchnorm的计算过程。****
1)对于每个批次的输入数据,计算其均值和方差。
2)对输入数据进行标准化,即减去均值并除以标准差。
3)使用学习参数(拉伸因子和偏移量)进行线性变换,使得数据重新具有适当的比例和偏移。
BatchNorm 可以在训练过程中通过批次数据的统计信息来进行标准化,也可以在推理过程中使用移动平均来估计整个数据集的统计信息,以实现更好的泛化能力和稳定性。
技术交流
前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~
我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。
方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流+CSDN
用通俗易懂的方式讲解系列
-
重磅来袭!《大模型面试宝典》(2024版) 发布!
-
重磅来袭!《大模型实战宝典》(2024版) 发布!
-
用通俗易懂的方式讲解:不用再找了,这是大模型最全的面试题库
-
用通俗易懂的方式讲解:这是我见过的最适合大模型小白的 PyTorch 中文课程
-
用通俗易懂的方式讲解:一文讲透最热的大模型开发框架 LangChain
-
用通俗易懂的方式讲解:基于 LangChain + ChatGLM搭建知识本地库
-
用通俗易懂的方式讲解:基于大模型的知识问答系统全面总结
-
用通俗易懂的方式讲解:ChatGLM3 基础模型多轮对话微调
-
用通俗易懂的方式讲解:最火的大模型训练框架 DeepSpeed 详解来了
-
用通俗易懂的方式讲解:这应该是最全的大模型训练与微调关键技术梳理
-
用通俗易懂的方式讲解:Stable Diffusion 微调及推理优化实践指南
-
用通俗易懂的方式讲解:大模型训练过程概述
-
用通俗易懂的方式讲解:专补大模型短板的RAG
-
用通俗易懂的方式讲解:大模型LLM Agent在 Text2SQL 应用上的实践
-
用通俗易懂的方式讲解:大模型 LLM RAG在 Text2SQL 上的应用实践
-
用通俗易懂的方式讲解:大模型微调方法总结
-
用通俗易懂的方式讲解:涨知识了,这篇大模型 LangChain 框架与使用示例太棒了
-
用通俗易懂的方式讲解:掌握大模型这些优化技术,优雅地进行大模型的训练和推理!
-
用通俗易懂的方式讲解:九大最热门的开源大模型 Agent 框架来了
相关文章:
万得AI算法工程师一面面试题6道|含解析
节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 今天…...
蓝桥杯23年第十四届省赛-异或和之和|拆位、贡献法
题目链接: 蓝桥杯2023年第十四届省赛真题-异或和之和 - C语言网 (dotcpp.com) 1.异或和之和 - 蓝桥云课 (lanqiao.cn) 参考题解: 蓝桥杯真题讲解:异或和之和 (拆位、贡献法)-CSDN博客 洛谷P9236 [蓝桥杯 2023 省 A]…...
Unity进阶之路(1)回顾与思考
首先呢,博主在这里先反思一下自己这几个月,其实并没有多少进步。 在寒假中,博主几乎是独立编写了一个小程序的完整UI和一个Uniapp的雏形。那段时间是博主生产力最高的时间段。几乎是每天8点起来开始编写代码,晚上一直忙到很晚。 …...

【C语言】——指针八:指针运算笔试题解析
【C语言】——指针八:指针运算笔试题解析 一、题一二、题二三、题三四、题四五、题五六、题六七、题七 一、题一 //程序输出结果是什么 int main() {int a[5] { 1,2,3,4,5 };int* ptr (int*)(&a 1);printf("%d, %d", *(a 1), *(ptr - 1));return…...

JVM字节码与类的加载——class文件结构
文章目录 1、概述1.1、class文件的跨平台性1.2、编译器分类1.3、透过字节码指令看代码细节 2、虚拟机的基石:class文件2.1、字节码指令2.2、解读字节码方式 3、class文件结构3.1、魔数:class文件的标识3.2、class文件版本号3.3、常量池:存放所…...

小程序如何通过公众号发送新订单提醒
当客户在小程序上下单后,公众号会发送订单通知,这可以让管理员及时获知用户下单情况,方便及时处理订单和提供服务。下面是具体介绍如何设置公众号来发送订单服务通知。 方式一:通过采云公众号发送订单通知 此种方式是默认的通知…...

聊聊公众号最让我不爽的两个痛点
本文首发于 Python猫 微信公众号最让我不爽的地方有两个,而且有很多人虽然也不爽,却不知道原因。 本文想聊聊公众号的两个痛点,因为我经常收到私信问这两个问题,本文算是一次集中的回复吧。 第一个不爽的点是公众号会屏蔽外链&…...

【leetCode】2810. 故障键盘
文章目录 [2810. 故障键盘](https://leetcode.cn/problems/faulty-keyboard/)思路一:模拟代码:思路二:双端队列代码: 2810. 故障键盘 思路一:模拟 用StringBuilder来拼贴字符遍历字符串,如果遇到i,对拼贴好…...

xshell7连接ubuntu18.04
🎡导航小助手🎡 1.查看ubuntu IP2.开启openssh-server3.静态IP设置4.Xshell连接 1.查看ubuntu IP 输入下面命令查看IP ifconfig -a可以看到网卡是ens33,IP为192.168.3.180。 2.开启openssh-server 1、执行下句,下载SSH服务 s…...
真正的力量:实力与人际关系的平衡艺术
在当今社会,人们常常在追求个人发展和建立良好人际关系之间寻找平衡。有一种观点认为,“没有实力,就不要对别人好。不然,很容易被定义为讨好。”这句话在一定程度上揭示了实力与人际关系之间的微妙联系。本文将探讨这一观点的深层…...

Acwing.1388 游戏(区间DP对抗思想)
题目 玩家一和玩家二共同玩一个小游戏。 给定一个包含 N个正整数的序列。 由玩家一开始,双方交替行动。 每次行动可以在数列的两端之中任选一个数字将其取走,并给自己增加相应数字的分数。(双初始分都是 0分) 当所有数字都被…...

Numpy数组转换为csv文件
参考:Converting Numpy Array to CSV 在数据分析和处理中,经常会涉及到将数据从一个形式转换为另一个形式的操作。 其中,将Numpy数组转换为csv文件是一种常见的操作,因为csv文件是一种通用的数据存储格式,方便与其他软…...
替代安全指标(Surrogate Safety Measures (SSM) )
替代安全措施(Surrogate Safety Measures (SSM) )用于从数据中寻找接近碰撞,或可能发生(但实际没有发生)的碰撞事件。 SSM的两个合格标准: (1)它应该来自与碰撞直接相关的交通冲突&…...

usb_camera传输视频流编码的问题记录!
前言: 大家好,今天给大家分享的内容是,一个vip课程付费的朋友,在学习过程中遇到了一个usb采集的视频数据流,经过ffmpeg编码,出现了问题: 问题分析: 其实这个问题不难,关键…...

Linux安装nginx保姆级教程
文章目录 前言一、nginx安装(保姆级教程)1.安装nginx依赖2.安装wget3.创建nginx安装目录4.下载nginx5.查看下载好的nginx6.解压缩7.查看当前目录下的文件→进入nginx-1.8.0目录→查看当前目录下的文件8.安装nginx9.查看nginx安装目录并启动nginx10.网络请…...

leetcode-判断二分图
. - 力扣(LeetCode) 存在一个 无向图 ,图中有 n 个节点。其中每个节点都有一个介于 0 到 n - 1 之间的唯一编号。给你一个二维数组 graph ,其中 graph[u] 是一个节点数组,由节点 u 的邻接节点组成。形式上,…...

算法day30 回溯6
332 重新安排行程 给你一份航线列表 tickets ,其中 tickets[i] [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。 所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK …...

分享three.js实现乐高小汽车
前言 Web脚本语言JavaScript入门容易,但是想要熟练掌握却需要几年的学习与实践,还要在弱类型开发语言中习惯于使用模块来构建你的代码,就像小时候玩的乐高积木一样。 应用程序的模块化理念,通过将实现隐藏在一个简单的接口后面&a…...
gpt的构造和原理
gpt是序列预测模型。 问答是通过确定问答格式样本训练出来的!比如“Q:xxxx.A:xxx"本质还是根据前面的序列预测后面的序列。在自回归训练过程中,文本序列(可能包含问题和紧随其后的答案)被视为一个整体输入到模型…...

基于springboot实现教师人事档案管理系统项目【项目源码+论文说明】计算机毕业设计
基于springboot实现IT技术交流和分享平台系统演示 摘要 我国科学技术的不断发展,计算机的应用日渐成熟,其强大的功能给人们留下深刻的印象,它已经应用到了人类社会的各个层次的领域,发挥着重要的不可替换的作用。信息管理作为计算…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...