0205矩阵分块法-矩阵及其运算-线性代数
文章目录
- 1 分块矩阵的定义
- 2 分块矩阵的运算(性质)
- 3 按列分块与按行分块
- 结语
1 分块矩阵的定义
将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子快,以子块为元素的形式上的矩阵称为分块矩阵。
2 分块矩阵的运算(性质)
-
设矩阵A与B的行数相同,列数相同,采用相同的分块法,有
A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , B = ( B 11 ⋯ B 1 r ⋮ ⋮ B s 1 ⋯ B s r ) A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{sr} \end{pmatrix} ,B=\begin{pmatrix} B_{11}&\cdots&B_{1r}\\ \vdots&&\vdots\\ B_{s1}&\cdots&B_{sr} \end{pmatrix}\\ A= A11⋮As1⋯⋯A1r⋮Asr ,B= B11⋮Bs1⋯⋯B1r⋮Bsr
其中 A i j 与 B i j A_{ij}与B_{ij} Aij与Bij行数相同,列数相同,那么
A + B = ( A 11 + B 11 ⋯ A 1 r + B 1 r ⋮ ⋮ A s 1 + B s 1 ⋯ A s r + B s r ) A+B=\begin{pmatrix} A_{11}+B_{11}&\cdots&A_{1r}+B_{1r}\\ \vdots&&\vdots\\ A_{s1}+B_{s1}&\cdots&A_{sr}+B_{sr} \end{pmatrix} A+B= A11+B11⋮As1+Bs1⋯⋯A1r+B1r⋮Asr+Bsr -
设
A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , λ 为数,那么 A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{sr} \end{pmatrix} ,\lambda为数,那么 A= A11⋮As1⋯⋯A1r⋮Asr ,λ为数,那么λ A = ( λ A 11 ⋯ λ A 1 r ⋮ ⋮ λ A s 1 ⋯ λ A s r ) \lambda A=\begin{pmatrix} \lambda A_{11}&\cdots&\lambda A_{1r}\\ \vdots&&\vdots\\ \lambda A_{s1}&\cdots&\lambda A_{sr} \end{pmatrix} λA= λA11⋮λAs1⋯⋯λA1r⋮λAsr
-
设A位 m × l m\times l m×l矩阵,B位 l × n l\times n l×n矩阵,分块成
A = ( A 11 ⋯ A 1 t ⋮ ⋮ A s 1 ⋯ A s t ) , B = ( A 11 ⋯ A 1 r ⋮ ⋮ A t 1 ⋯ A t r ) A=\begin{pmatrix} A_{11}&\cdots&A_{1t}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{st} \end{pmatrix} ,B=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{t1}&\cdots&A_{tr} \end{pmatrix} A= A11⋮As1⋯⋯A1t⋮Ast ,B= A11⋮At1⋯⋯A1r⋮Atr
其中 A i 1 , A i 2 , ⋯ , A i t A_{i1},A_{i2},\cdots,A_{it} Ai1,Ai2,⋯,Ait的列数分别等于 B 1 j , B 2 j , ⋯ , B t j B_{1j},B_{2j},\cdots,B_{tj} B1j,B2j,⋯,Btj的行数,那么
A B = ( C 11 ⋯ C 1 r ⋮ ⋮ C s 1 ⋯ C s r ) AB=\begin{pmatrix} C_{11}&\cdots&C_{1r}\\ \vdots&&\vdots\\ C_{s1}&\cdots&C_{sr} \end{pmatrix} AB= C11⋮Cs1⋯⋯C1r⋮Csr
其中
C i j = ∑ k = 1 t A i k B k j ( i = 1 , ⋯ , s ; j = 1 , ⋯ , r ) C_{ij}=\sum_{k=1}^tA_{ik}B_{kj}(i=1,\cdots,s;j=1,\cdots,r) Cij=k=1∑tAikBkj(i=1,⋯,s;j=1,⋯,r) -
设
A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) ,则 A T = ( A 11 T ⋯ A s 1 T ⋮ ⋮ A 1 r T ⋯ A s r T ) A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{sr} \end{pmatrix} ,则A^T=\begin{pmatrix} A_{11}^T&\cdots&A_{s1}^T\\ \vdots&&\vdots\\ A_{1r}^T&\cdots&A_{sr}^T \end{pmatrix} A= A11⋮As1⋯⋯A1r⋮Asr ,则AT= A11T⋮A1rT⋯⋯As1T⋮AsrT -
设A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即
A = ( A 1 O A 2 ⋱ O A s ) A=\begin{pmatrix} A_{1}&&&O\\ &A_2&&\\ &&\ddots&\\ O&&&A_s \end{pmatrix} A= A1OA2⋱OAs
其中 A i ( i = 1 , 2 , ⋯ , s ) A_i(i=1,2,\cdots,s) Ai(i=1,2,⋯,s)都方阵,那么称A为分块对角矩阵。分块对角矩阵的行列式有以下性质
∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ ⋯ ∣ A s ∣ |A|=|A_1||A_2|\cdots |A_s| ∣A∣=∣A1∣∣A2∣⋯∣As∣
由此性质可知,若 ∣ A i ∣ ≠ 0 ( i = i , 2 , ⋯ , s ) |A_i|\not=0(i=i,2,\cdots,s) ∣Ai∣=0(i=i,2,⋯,s),则 ∣ A ∣ ≠ 0 |A|\not=0 ∣A∣=0,并有
A − 1 = ( A 1 − 1 O A 2 − 1 ⋱ O A s − 1 ) A^{-1}=\begin{pmatrix} A_{1}^{-1}&&&O\\ &A_2^{-1}&&\\ &&\ddots&\\ O&&&A_s^{-1} \end{pmatrix} A−1= A1−1OA2−1⋱OAs−1
例18 设
A = ( 5 0 0 0 3 1 0 2 1 ) ,求 A − 1 A=\begin{pmatrix} 5&0&0\\ 0&3&1\\ 0&2&1 \end{pmatrix} ,求A^{-1} A= 500032011 ,求A−1KaTeX parse error: Undefined control sequence: \vline at position 24: …gin{pmatrix} 5&\̲v̲l̲i̲n̲e̲0&0\\ \hdashlin…
3 按列分块与按行分块
m × n m\times n m×n矩阵A有n列,称为矩阵A的n个列向量,若第j列记作
a j = ( a 1 j a 2 j ⋮ a m j ) a_j=\begin{pmatrix} a_{1j}\\ a_{2j}\\ \vdots\\ a_{mj} \end{pmatrix} aj= a1ja2j⋮amj
则A可按列分块位
A = ( a 1 , a 2 , ⋯ , a n ) A=(a_1,a_2,\cdots,a_n) A=(a1,a2,⋯,an)
m × n m\times n m×n矩阵A有m行,称为矩阵A的m个行向量,若第 i i i行记作
α i T = ( a i 1 , a i 2 , ⋯ , a i n ) \alpha_i^T=(a_{i1},a_{i2},\cdots,a_{in}) αiT=(ai1,ai2,⋯,ain)
则A可按行分开为
A = ( α 1 T α 2 T ⋮ α m T ) A=\begin{pmatrix} \alpha_1^T\\ \alpha_2^T\\ \vdots\\ \alpha_m^T \end{pmatrix} A= α1Tα2T⋮αmT
对于矩阵 A = ( a i j ) m × s A=(a_{ij})_{m\times s} A=(aij)m×s与矩阵 B = ( b i j ) s × n B=(b_{ij})_{s\times n} B=(bij)s×n的乘积矩阵 A B = C = ( c i j ) m × n AB=C=(c_{ij})_{m\times n} AB=C=(cij)m×n,若把A按行分成m快,把B案列分成n快,便有
A B = ( α 1 T α 2 T ⋮ α m T ) ( b 1 , b 2 , ⋯ , b n ) = ( α 1 T b 1 α 1 T b 2 ⋯ α 1 T b n α 2 T b 1 α 2 T b 2 ⋯ α 2 T b n ⋮ ⋮ ⋮ α m T b 1 α m T b 2 ⋯ α m T b n ) AB=\begin{pmatrix} \alpha_1^T\\ \alpha_2^T\\ \vdots\\ \alpha_m^T \end{pmatrix} \begin{pmatrix} b_1,b_2,\cdots,b_n\\ \end{pmatrix}\\ =\begin{pmatrix} \alpha_1^Tb_1&\alpha_1^Tb_2&\cdots&\alpha_1^Tb_n\\ \alpha_2^Tb_1&\alpha_2^Tb_2&\cdots&\alpha_2^Tb_n\\ \vdots&\vdots&&\vdots\\ \alpha_m^Tb_1&\alpha_m^Tb_2&\cdots&\alpha_m^Tb_n\\ \end{pmatrix} AB= α1Tα2T⋮αmT (b1,b2,⋯,bn)= α1Tb1α2Tb1⋮αmTb1α1Tb2α2Tb2⋮αmTb2⋯⋯⋯α1Tbnα2Tbn⋮αmTbn
其中
c i j = α i T b j = ( a i 1 , a i 2 , ⋯ , a i s ) ( b 1 j b 2 j ⋮ b s j ) = ∑ k = 1 s a i k b k j c_{ij}=\alpha_i^Tb_j=(a_{i1},a_{i2},\cdots,a_{is}) \begin{pmatrix} b_{1j}\\ b_{2j}\\ \vdots\\ b_{sj} \end{pmatrix} =\sum_{k=1}^sa_{ik}b_{kj} cij=αiTbj=(ai1,ai2,⋯,ais) b1jb2j⋮bsj =k=1∑saikbkj
例19 证明矩阵 A = O A=O A=O的充分必要条件是方阵 A T A = O A^TA=O ATA=O
证明:条件的必要性是显然的 充分性 设 A = ( a i j ) m × n ,把 A 按列分块位 A = ( a 1 , a 2 , ⋯ , a n ) ,则 A T A = ( a 1 T a 2 T ⋮ a n T ) ( a 1 , a 2 , ⋯ , a n ) = ( a 1 T a 1 a 1 T a 2 ⋯ a 1 T a n a 2 T a 1 a 2 T a 2 ⋯ a 2 T a n ⋮ ⋮ ⋮ a n T a 1 a n T a 2 ⋯ a n T a n ) 即 A T A 的 ( i , j ) 元为 a i T a j 因 A T A = O ,故 a i T a j = 0 ( i , j = 1 , 2 , ⋯ , n ) 特殊的,有 a j T a j = 0 ( j = 1 , 2 , ⋯ , n ) 而 a j T a j = ( a 1 j , a 2 j , ⋯ , a m j ) ( a 1 j a 2 j ⋮ a m j ) = a 1 j 2 + a 2 j 2 + ⋯ + a m j 2 = 0 , 得 a 1 j = a 2 j = ⋯ = a m j = 0 即 A = O 证明:条件的必要性是显然的\\ 充分性\\ 设A=(a_{ij})_{m\times n},把A按列分块位A=(a_1,a_2,\cdots,a_n),则\\ A^TA=\begin{pmatrix} a_1^T\\ a_2^T\\ \vdots\\ a_n^T \end{pmatrix} (a_1,a_2,\cdots,a_n)\\ =\begin{pmatrix} a_1^Ta_1&a_1^Ta_2&\cdots&a_1^Ta_n\\ a_2^Ta_1&a_2^Ta_2&\cdots&a_2^Ta_n\\ \vdots&\vdots&&\vdots\\ a_n^Ta_1&a_n^Ta_2&\cdots&a_n^Ta_n\\ \end{pmatrix}\\ 即A^TA的(i,j)元为a_i^Ta_j 因A^TA=O,故\\ a_i^Ta_j=0(i,j=1,2,\cdots,n) 特殊的,有\\ a_j^Ta_j=0(j=1,2,\cdots,n)\\ 而 a_j^Ta_j=(a_{1j},a_{2j},\cdots,a_{mj}) \begin{pmatrix} a_{1j}\\ a_{2j}\\ \vdots\\ a_{mj} \end{pmatrix} =a_{1j}^2+a_{2j}^2+\cdots+a_{mj}^2=0,得\\ a_{1j}=a_{2j}=\cdots=a_{mj}=0\\ 即 A=O 证明:条件的必要性是显然的充分性设A=(aij)m×n,把A按列分块位A=(a1,a2,⋯,an),则ATA= a1Ta2T⋮anT (a1,a2,⋯,an)= a1Ta1a2Ta1⋮anTa1a1Ta2a2Ta2⋮anTa2⋯⋯⋯a1Tana2Tan⋮anTan 即ATA的(i,j)元为aiTaj因ATA=O,故aiTaj=0(i,j=1,2,⋯,n)特殊的,有ajTaj=0(j=1,2,⋯,n)而ajTaj=(a1j,a2j,⋯,amj) a1ja2j⋮amj =a1j2+a2j2+⋯+amj2=0,得a1j=a2j=⋯=amj=0即A=O
线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\cdots\cdots\cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \end{cases} ⎩ ⎨ ⎧a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,⋯⋯⋯⋯am1x1+am2x2+⋯+amnxn=bm,
它的矩阵乘积形式为
A m × n x n × 1 = b m × 1 A_{m\times n}x_{n\times 1}=b_{m\times 1} Am×nxn×1=bm×1
上式中,把A案列分块,把x按行分块,有分块矩阵的乘法有
( a 1 , a 2 , ⋯ , a n ) ( x 1 , x 2 , ⋮ x n ) = b , 即 x 1 a 1 + x 2 a 2 + ⋯ + x n a n = b (a_1,a_2,\cdots,a_n) \begin{pmatrix} x_1,\\ x_2,\\ \vdots\\ x_n \end{pmatrix} =b,即\\ x_1a_1+x_2a_2+\cdots+x_na_n=b (a1,a2,⋯,an) x1,x2,⋮xn =b,即x1a1+x2a2+⋯+xnan=b
其实方程组表成
( a 11 a 21 ⋮ a m 1 ) x 1 + ( a 12 a 22 ⋮ a m 2 ) x 2 + ⋯ ( a 1 n a 2 n ⋮ a m n ) x n = ( b 1 b 2 ⋮ b m ) \begin{pmatrix} a_{11}\\ a_{21}\\ \vdots\\ a_{m1} \end{pmatrix}x_1 +\begin{pmatrix} a_{12}\\ a_{22}\\ \vdots\\ a_{m2} \end{pmatrix}x_2 +\cdots \begin{pmatrix} a_{1n}\\ a_{2n}\\ \vdots\\ a_{mn} \end{pmatrix}x_n =\begin{pmatrix} b_1\\ b_2\\ \vdots\\ b_m \end{pmatrix} a11a21⋮am1 x1+ a12a22⋮am2 x2+⋯ a1na2n⋮amn xn= b1b2⋮bm
结语
❓QQ:806797785
⭐️文档笔记地址 https://github.com/gaogzhen/math
参考:
[1]同济大学数学系.工程数学.线性代数 第6版 [M].北京:高等教育出版社,2014.6.p46-52.
[2]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p12.
相关文章:
0205矩阵分块法-矩阵及其运算-线性代数
文章目录 1 分块矩阵的定义2 分块矩阵的运算(性质)3 按列分块与按行分块 结语 1 分块矩阵的定义 将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子快,以子块为元素的形式上的矩阵称为分块矩阵。 2 分块矩阵的运算…...
1、java语法入门(找工作版)
文章目录 一、Java简介二、Java常量与变量1、标识符2、关键字3、变量4、类的命名规则5、数据类型6、基本数据类型字面值7、变量的定义与初始化8、ASCII码和Unicode编码9、转义字符10、类型转换11、常量 三、Java运算符1、算术运算符2、赋值运算符3、关系运算符4、逻辑运算符5、…...
arm的状态寄存器
目录 一、arm 的 PSRs二、CPSR2.1 CPSR_cxsf 三、SPSR四、APSR 一、arm 的 PSRs arm 中有很多程序状态寄存器(Program Status Registers,PSRs)用于存储处理器的状态信息,包括 CPSR\SPSR\FPSR\APSR 等: CPSRÿ…...
2024 蓝桥打卡Day34
20240406蓝桥杯备赛 1、学习蓝桥云课省赛冲刺课 【1-手写与思维】【2-递归与递推】2、学习蓝桥云课Java省赛无忧班 【1-语言基础】3、代码练习字符串排序大小写转换 (ccfcsp之前要是学了我就能上200了 啊啊啊啊 错过啊)斐波那契数列 递归解法纸张尺寸问题…...
华为海思校园招聘-芯片-数字 IC 方向 题目分享——第九套
华为海思校园招聘-芯片-数字 IC 方向 题目分享(有参考答案)——第九套 部分题目分享,完整版获取(WX:didadidadidida313,加我备注:CSDN huawei数字芯片题目,谢绝白嫖哈) 单选 1&…...
如何创建虚拟环境打包py文件
Python 项目通常依赖于特定的库和版本。不同的项目可能依赖于相同库的不同版本,这可能导致冲突。使用虚拟环境,你可以为每个项目创建一个独立的 Python 环境,每个环境都有自己的库和版本,从而避免了依赖冲突。 采用虚拟环境打包P…...
CSS 学习笔记 总结
CSS 布局方式 • 表格布局 • 元素定位 • 浮动布局(注意浮动的负效应) • flex布局 • grid布局(感兴趣的可以看下菜鸟教程) 居中设置 元素水平居中 • 设置宽度后,margin设置为auto • 父容器设置text-alig…...
基于Swin Transformers的乳腺癌组织病理学图像多分类
乳腺癌的非侵入性诊断程序涉及体检和成像技术,如乳房X光检查、超声检查和磁共振成像。成像程序对于更全面地评估癌症区域和识别癌症亚型的敏感性较低。 CNN表现出固有的归纳偏差,并且对于图像中感兴趣对象的平移、旋转和位置有所不同。因此,…...
MySQL主从的介绍与应用
mysql主从 文章目录 mysql主从1. 主从简介1.1 主从作用1.2 主从形式 2. 主从复制原理3. 主从复制配置3.1 mysql安装(两台主机安装一致,下面只演示一台主机操作)3.2 mysql主从配置3.2.1 确保从数据库与主数据库里的数据一样3.2.2 在主数据库里…...
pytest中文使用文档----12缓存:记录执行的状态
1. cacheprovider插件 1.1. --lf, --last-failed:只执行上一轮失败的用例1.2. --ff, --failed-first:先执行上一轮失败的用例,再执行其它的1.3. --nf, --new-first:先执行新加的或修改的用例,再执行其它的1.4. --cache…...
【代码随想录】哈希表
文章目录 242.有效的字母异位词349. 两个数组的交集202. 快乐数1. 两数之和454. 四数相加 II383. 赎金信15. 三数之和18. 四数之和 242.有效的字母异位词 class Solution {public boolean isAnagram(String s, String t) {if(snull || tnull || s.length()!t.length()){return …...
绘图工具 draw.io / diagrams.net 免费在线图表编辑器
拓展阅读 常见免费开源绘图工具 OmniGraffle 创建精确、美观图形的工具 UML-架构图入门介绍 starUML UML 绘制工具 starUML 入门介绍 PlantUML 是绘制 uml 的一个开源项目 UML 等常见图绘制工具 绘图工具 draw.io / diagrams.net 免费在线图表编辑器 绘图工具 excalidr…...
【Vue】 Vue项目中的跨域配置指南
她坐红帐 面带浓妆 唢呐一声唱 明月光 这女子泪眼拜高堂 一拜天地日月 二拜就遗忘这一生 跪三拜红尘凉 庭院 大门锁上 杂乱的眼光 多喧嚷 这女子笑颜几惆怅 余生喜乐悲欢都无关 她眼中已无光 🎵 倪莫问《三拜红尘凉》 在前后端分离的项目开发中…...
跨站脚本攻击XSS
漏洞产生原因: XSS攻击本质上是一种注入攻击,产生原因是Web应用对外部输入参数处理不当,攻击者将恶意代码注入当前Web界面,在用户访问时执行 漏洞攻击手段: 反射型(非持久型)XSS-将payload包…...
C++中的vector与C语言中的数组的区别
C中的vector和C语言中的数组在很多方面都有所不同,以下是它们之间的一些主要区别: 大小可变性: vector是C标准模板库(STL)提供的动态数组容器,它的大小可以动态增长或减少。这意味着你可以在运行时添加或删…...
drawio画图编辑图形颜色
drawio画图编辑图形颜色 团队的安全第一图表。将您的存储空间带到我们的在线工具中,或使用桌面应用程序进行本地保存。 1.安装准备 1.1安装平台 多平台 1.2在线使用 浏览器打开网页使用 1.3软件下载 drawio官网github仓库下载 2.在浏览器的网页中使用drawio…...
uniapp中uni.navigateTo传递变量
效果展示: 核心代码: uniapp中uni.navigateTo传递变量 methods: {changePages(item) {setDatas("maintenanceFunName", JSON.stringify(item)).then((res) > {uni.navigateTo({url: /pages/PMS/maintenance/maintenanceTypes/maintenanceT…...
Spring Boot 构建war 部署到tomcat下无法在Nacos中注册服务
Spring Boot 构建war 部署到tomcat下无法在Nacos中注册服务 1. 问题2. 分析3. 解决方案参考 1. 问题 使用Nacos作为注册中心的Spring Boot项目,以war包形式部署到服务器上,启动项目发现该服务无法在Nacos中注册。 2. 分析 SpringCloud 项目打 war 包部…...
(2024,Attention-Mamba,MoE 替换 MLP)Jamba:混合 Transformer-Mamba 语言模型
Jamba: A Hybrid Transformer-Mamba Language Model 公和众和号:EDPJ(进 Q 交流群:922230617 或加 VX:CV_EDPJ 进 V 交流群) 目录 0. 摘要 1. 简介 2. 模型架构 3. 收获的好处 3.1 单个 80GB GPU 的 Jamba 实现 …...
“Java泛型” 得所憩,落日美酒聊共挥
本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人能接…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
