当前位置: 首页 > news >正文

0205矩阵分块法-矩阵及其运算-线性代数

文章目录

      • 1 分块矩阵的定义
      • 2 分块矩阵的运算(性质)
      • 3 按列分块与按行分块
    • 结语

1 分块矩阵的定义

将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子快,以子块为元素的形式上的矩阵称为分块矩阵。

2 分块矩阵的运算(性质)

  1. 设矩阵A与B的行数相同,列数相同,采用相同的分块法,有
    A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , B = ( B 11 ⋯ B 1 r ⋮ ⋮ B s 1 ⋯ B s r ) A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{sr} \end{pmatrix} ,B=\begin{pmatrix} B_{11}&\cdots&B_{1r}\\ \vdots&&\vdots\\ B_{s1}&\cdots&B_{sr} \end{pmatrix}\\ A= A11As1A1rAsr ,B= B11Bs1B1rBsr
    其中 A i j 与 B i j A_{ij}与B_{ij} AijBij行数相同,列数相同,那么
    A + B = ( A 11 + B 11 ⋯ A 1 r + B 1 r ⋮ ⋮ A s 1 + B s 1 ⋯ A s r + B s r ) A+B=\begin{pmatrix} A_{11}+B_{11}&\cdots&A_{1r}+B_{1r}\\ \vdots&&\vdots\\ A_{s1}+B_{s1}&\cdots&A_{sr}+B_{sr} \end{pmatrix} A+B= A11+B11As1+Bs1A1r+B1rAsr+Bsr


  2. A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , λ 为数,那么 A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{sr} \end{pmatrix} ,\lambda为数,那么 A= A11As1A1rAsr ,λ为数,那么

    λ A = ( λ A 11 ⋯ λ A 1 r ⋮ ⋮ λ A s 1 ⋯ λ A s r ) \lambda A=\begin{pmatrix} \lambda A_{11}&\cdots&\lambda A_{1r}\\ \vdots&&\vdots\\ \lambda A_{s1}&\cdots&\lambda A_{sr} \end{pmatrix} λA= λA11λAs1λA1rλAsr

  3. 设A位 m × l m\times l m×l矩阵,B位 l × n l\times n l×n矩阵,分块成
    A = ( A 11 ⋯ A 1 t ⋮ ⋮ A s 1 ⋯ A s t ) , B = ( A 11 ⋯ A 1 r ⋮ ⋮ A t 1 ⋯ A t r ) A=\begin{pmatrix} A_{11}&\cdots&A_{1t}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{st} \end{pmatrix} ,B=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{t1}&\cdots&A_{tr} \end{pmatrix} A= A11As1A1tAst ,B= A11At1A1rAtr
    其中 A i 1 , A i 2 , ⋯ , A i t A_{i1},A_{i2},\cdots,A_{it} Ai1,Ai2,,Ait的列数分别等于 B 1 j , B 2 j , ⋯ , B t j B_{1j},B_{2j},\cdots,B_{tj} B1j,B2j,,Btj的行数,那么
    A B = ( C 11 ⋯ C 1 r ⋮ ⋮ C s 1 ⋯ C s r ) AB=\begin{pmatrix} C_{11}&\cdots&C_{1r}\\ \vdots&&\vdots\\ C_{s1}&\cdots&C_{sr} \end{pmatrix} AB= C11Cs1C1rCsr
    其中
    C i j = ∑ k = 1 t A i k B k j ( i = 1 , ⋯ , s ; j = 1 , ⋯ , r ) C_{ij}=\sum_{k=1}^tA_{ik}B_{kj}(i=1,\cdots,s;j=1,\cdots,r) Cij=k=1tAikBkj(i=1,,s;j=1,,r)


  4. A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) ,则 A T = ( A 11 T ⋯ A s 1 T ⋮ ⋮ A 1 r T ⋯ A s r T ) A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\ \vdots&&\vdots\\ A_{s1}&\cdots&A_{sr} \end{pmatrix} ,则A^T=\begin{pmatrix} A_{11}^T&\cdots&A_{s1}^T\\ \vdots&&\vdots\\ A_{1r}^T&\cdots&A_{sr}^T \end{pmatrix} A= A11As1A1rAsr ,则AT= A11TA1rTAs1TAsrT

  5. 设A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即
    A = ( A 1 O A 2 ⋱ O A s ) A=\begin{pmatrix} A_{1}&&&O\\ &A_2&&\\ &&\ddots&\\ O&&&A_s \end{pmatrix} A= A1OA2OAs
    其中 A i ( i = 1 , 2 , ⋯ , s ) A_i(i=1,2,\cdots,s) Ai(i=1,2,,s)都方阵,那么称A为分块对角矩阵。

    分块对角矩阵的行列式有以下性质
    ∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ ⋯ ∣ A s ∣ |A|=|A_1||A_2|\cdots |A_s| A=A1∣∣A2As
    由此性质可知,若 ∣ A i ∣ ≠ 0 ( i = i , 2 , ⋯ , s ) |A_i|\not=0(i=i,2,\cdots,s) Ai=0i=i,2,,s),则 ∣ A ∣ ≠ 0 |A|\not=0 A=0,并有
    A − 1 = ( A 1 − 1 O A 2 − 1 ⋱ O A s − 1 ) A^{-1}=\begin{pmatrix} A_{1}^{-1}&&&O\\ &A_2^{-1}&&\\ &&\ddots&\\ O&&&A_s^{-1} \end{pmatrix} A1= A11OA21OAs1
    例18 设
    A = ( 5 0 0 0 3 1 0 2 1 ) ,求 A − 1 A=\begin{pmatrix} 5&0&0\\ 0&3&1\\ 0&2&1 \end{pmatrix} ,求A^{-1} A= 500032011 ,求A1

    KaTeX parse error: Undefined control sequence: \vline at position 24: …gin{pmatrix} 5&\̲v̲l̲i̲n̲e̲0&0\\ \hdashlin…

3 按列分块与按行分块

m × n m\times n m×n矩阵A有n列,称为矩阵A的n个列向量,若第j列记作
a j = ( a 1 j a 2 j ⋮ a m j ) a_j=\begin{pmatrix} a_{1j}\\ a_{2j}\\ \vdots\\ a_{mj} \end{pmatrix} aj= a1ja2jamj
则A可按列分块位
A = ( a 1 , a 2 , ⋯ , a n ) A=(a_1,a_2,\cdots,a_n) A=(a1,a2,,an)
m × n m\times n m×n矩阵A有m行,称为矩阵A的m个行向量,若第 i i i行记作
α i T = ( a i 1 , a i 2 , ⋯ , a i n ) \alpha_i^T=(a_{i1},a_{i2},\cdots,a_{in}) αiT=(ai1,ai2,,ain)
则A可按行分开为
A = ( α 1 T α 2 T ⋮ α m T ) A=\begin{pmatrix} \alpha_1^T\\ \alpha_2^T\\ \vdots\\ \alpha_m^T \end{pmatrix} A= α1Tα2TαmT
对于矩阵 A = ( a i j ) m × s A=(a_{ij})_{m\times s} A=(aij)m×s与矩阵 B = ( b i j ) s × n B=(b_{ij})_{s\times n} B=(bij)s×n的乘积矩阵 A B = C = ( c i j ) m × n AB=C=(c_{ij})_{m\times n} AB=C=(cij)m×n,若把A按行分成m快,把B案列分成n快,便有
A B = ( α 1 T α 2 T ⋮ α m T ) ( b 1 , b 2 , ⋯ , b n ) = ( α 1 T b 1 α 1 T b 2 ⋯ α 1 T b n α 2 T b 1 α 2 T b 2 ⋯ α 2 T b n ⋮ ⋮ ⋮ α m T b 1 α m T b 2 ⋯ α m T b n ) AB=\begin{pmatrix} \alpha_1^T\\ \alpha_2^T\\ \vdots\\ \alpha_m^T \end{pmatrix} \begin{pmatrix} b_1,b_2,\cdots,b_n\\ \end{pmatrix}\\ =\begin{pmatrix} \alpha_1^Tb_1&\alpha_1^Tb_2&\cdots&\alpha_1^Tb_n\\ \alpha_2^Tb_1&\alpha_2^Tb_2&\cdots&\alpha_2^Tb_n\\ \vdots&\vdots&&\vdots\\ \alpha_m^Tb_1&\alpha_m^Tb_2&\cdots&\alpha_m^Tb_n\\ \end{pmatrix} AB= α1Tα2TαmT (b1,b2,,bn)= α1Tb1α2Tb1αmTb1α1Tb2α2Tb2αmTb2α1Tbnα2TbnαmTbn
其中
c i j = α i T b j = ( a i 1 , a i 2 , ⋯ , a i s ) ( b 1 j b 2 j ⋮ b s j ) = ∑ k = 1 s a i k b k j c_{ij}=\alpha_i^Tb_j=(a_{i1},a_{i2},\cdots,a_{is}) \begin{pmatrix} b_{1j}\\ b_{2j}\\ \vdots\\ b_{sj} \end{pmatrix} =\sum_{k=1}^sa_{ik}b_{kj} cij=αiTbj=(ai1,ai2,,ais) b1jb2jbsj =k=1saikbkj

例19 证明矩阵 A = O A=O A=O的充分必要条件是方阵 A T A = O A^TA=O ATA=O
证明:条件的必要性是显然的 充分性 设 A = ( a i j ) m × n ,把 A 按列分块位 A = ( a 1 , a 2 , ⋯ , a n ) ,则 A T A = ( a 1 T a 2 T ⋮ a n T ) ( a 1 , a 2 , ⋯ , a n ) = ( a 1 T a 1 a 1 T a 2 ⋯ a 1 T a n a 2 T a 1 a 2 T a 2 ⋯ a 2 T a n ⋮ ⋮ ⋮ a n T a 1 a n T a 2 ⋯ a n T a n ) 即 A T A 的 ( i , j ) 元为 a i T a j 因 A T A = O ,故 a i T a j = 0 ( i , j = 1 , 2 , ⋯ , n ) 特殊的,有 a j T a j = 0 ( j = 1 , 2 , ⋯ , n ) 而 a j T a j = ( a 1 j , a 2 j , ⋯ , a m j ) ( a 1 j a 2 j ⋮ a m j ) = a 1 j 2 + a 2 j 2 + ⋯ + a m j 2 = 0 , 得 a 1 j = a 2 j = ⋯ = a m j = 0 即 A = O 证明:条件的必要性是显然的\\ 充分性\\ 设A=(a_{ij})_{m\times n},把A按列分块位A=(a_1,a_2,\cdots,a_n),则\\ A^TA=\begin{pmatrix} a_1^T\\ a_2^T\\ \vdots\\ a_n^T \end{pmatrix} (a_1,a_2,\cdots,a_n)\\ =\begin{pmatrix} a_1^Ta_1&a_1^Ta_2&\cdots&a_1^Ta_n\\ a_2^Ta_1&a_2^Ta_2&\cdots&a_2^Ta_n\\ \vdots&\vdots&&\vdots\\ a_n^Ta_1&a_n^Ta_2&\cdots&a_n^Ta_n\\ \end{pmatrix}\\ 即A^TA的(i,j)元为a_i^Ta_j 因A^TA=O,故\\ a_i^Ta_j=0(i,j=1,2,\cdots,n) 特殊的,有\\ a_j^Ta_j=0(j=1,2,\cdots,n)\\ 而 a_j^Ta_j=(a_{1j},a_{2j},\cdots,a_{mj}) \begin{pmatrix} a_{1j}\\ a_{2j}\\ \vdots\\ a_{mj} \end{pmatrix} =a_{1j}^2+a_{2j}^2+\cdots+a_{mj}^2=0,得\\ a_{1j}=a_{2j}=\cdots=a_{mj}=0\\ 即 A=O 证明:条件的必要性是显然的充分性A=(aij)m×n,把A按列分块位A=(a1,a2,,an),则ATA= a1Ta2TanT (a1,a2,,an)= a1Ta1a2Ta1anTa1a1Ta2a2Ta2anTa2a1Tana2TananTan ATA(i,j)元为aiTajATA=O,故aiTaj=0(i,j=1,2,,n)特殊的,有ajTaj=0(j=1,2,,n)ajTaj=(a1j,a2j,,amj) a1ja2jamj =a1j2+a2j2++amj2=0,a1j=a2j==amj=0A=O
线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\cdots\cdots\cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,⋯⋯⋯⋯am1x1+am2x2++amnxn=bm,
它的矩阵乘积形式为
A m × n x n × 1 = b m × 1 A_{m\times n}x_{n\times 1}=b_{m\times 1} Am×nxn×1=bm×1
上式中,把A案列分块,把x按行分块,有分块矩阵的乘法有
( a 1 , a 2 , ⋯ , a n ) ( x 1 , x 2 , ⋮ x n ) = b , 即 x 1 a 1 + x 2 a 2 + ⋯ + x n a n = b (a_1,a_2,\cdots,a_n) \begin{pmatrix} x_1,\\ x_2,\\ \vdots\\ x_n \end{pmatrix} =b,即\\ x_1a_1+x_2a_2+\cdots+x_na_n=b (a1,a2,,an) x1,x2,xn =b,x1a1+x2a2++xnan=b
其实方程组表成
( a 11 a 21 ⋮ a m 1 ) x 1 + ( a 12 a 22 ⋮ a m 2 ) x 2 + ⋯ ( a 1 n a 2 n ⋮ a m n ) x n = ( b 1 b 2 ⋮ b m ) \begin{pmatrix} a_{11}\\ a_{21}\\ \vdots\\ a_{m1} \end{pmatrix}x_1 +\begin{pmatrix} a_{12}\\ a_{22}\\ \vdots\\ a_{m2} \end{pmatrix}x_2 +\cdots \begin{pmatrix} a_{1n}\\ a_{2n}\\ \vdots\\ a_{mn} \end{pmatrix}x_n =\begin{pmatrix} b_1\\ b_2\\ \vdots\\ b_m \end{pmatrix} a11a21am1 x1+ a12a22am2 x2+ a1na2namn xn= b1b2bm

结语

❓QQ:806797785

⭐️文档笔记地址 https://github.com/gaogzhen/math

参考:

[1]同济大学数学系.工程数学.线性代数 第6版 [M].北京:高等教育出版社,2014.6.p46-52.

[2]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p12.

相关文章:

0205矩阵分块法-矩阵及其运算-线性代数

文章目录 1 分块矩阵的定义2 分块矩阵的运算(性质)3 按列分块与按行分块 结语 1 分块矩阵的定义 将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子快,以子块为元素的形式上的矩阵称为分块矩阵。 2 分块矩阵的运算…...

1、java语法入门(找工作版)

文章目录 一、Java简介二、Java常量与变量1、标识符2、关键字3、变量4、类的命名规则5、数据类型6、基本数据类型字面值7、变量的定义与初始化8、ASCII码和Unicode编码9、转义字符10、类型转换11、常量 三、Java运算符1、算术运算符2、赋值运算符3、关系运算符4、逻辑运算符5、…...

arm的状态寄存器

目录 一、arm 的 PSRs二、CPSR2.1 CPSR_cxsf 三、SPSR四、APSR 一、arm 的 PSRs arm 中有很多程序状态寄存器(Program Status Registers,PSRs)用于存储处理器的状态信息,包括 CPSR\SPSR\FPSR\APSR 等: CPSR&#xff…...

2024 蓝桥打卡Day34

20240406蓝桥杯备赛 1、学习蓝桥云课省赛冲刺课 【1-手写与思维】【2-递归与递推】2、学习蓝桥云课Java省赛无忧班 【1-语言基础】3、代码练习字符串排序大小写转换 (ccfcsp之前要是学了我就能上200了 啊啊啊啊 错过啊)斐波那契数列 递归解法纸张尺寸问题…...

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第九套

华为海思校园招聘-芯片-数字 IC 方向 题目分享(有参考答案)——第九套 部分题目分享,完整版获取(WX:didadidadidida313,加我备注:CSDN huawei数字芯片题目,谢绝白嫖哈) 单选 1&…...

如何创建虚拟环境打包py文件

Python 项目通常依赖于特定的库和版本。不同的项目可能依赖于相同库的不同版本,这可能导致冲突。使用虚拟环境,你可以为每个项目创建一个独立的 Python 环境,每个环境都有自己的库和版本,从而避免了依赖冲突。 采用虚拟环境打包P…...

CSS 学习笔记 总结

CSS 布局方式 • 表格布局 • 元素定位 • 浮动布局(注意浮动的负效应) • flex布局 • grid布局(感兴趣的可以看下菜鸟教程) 居中设置 元素水平居中 • 设置宽度后,margin设置为auto • 父容器设置text-alig…...

基于Swin Transformers的乳腺癌组织病理学图像多分类

乳腺癌的非侵入性诊断程序涉及体检和成像技术,如乳房X光检查、超声检查和磁共振成像。成像程序对于更全面地评估癌症区域和识别癌症亚型的敏感性较低。 CNN表现出固有的归纳偏差,并且对于图像中感兴趣对象的平移、旋转和位置有所不同。因此,…...

MySQL主从的介绍与应用

mysql主从 文章目录 mysql主从1. 主从简介1.1 主从作用1.2 主从形式 2. 主从复制原理3. 主从复制配置3.1 mysql安装(两台主机安装一致,下面只演示一台主机操作)3.2 mysql主从配置3.2.1 确保从数据库与主数据库里的数据一样3.2.2 在主数据库里…...

pytest中文使用文档----12缓存:记录执行的状态

1. cacheprovider插件 1.1. --lf, --last-failed:只执行上一轮失败的用例1.2. --ff, --failed-first:先执行上一轮失败的用例,再执行其它的1.3. --nf, --new-first:先执行新加的或修改的用例,再执行其它的1.4. --cache…...

【代码随想录】哈希表

文章目录 242.有效的字母异位词349. 两个数组的交集202. 快乐数1. 两数之和454. 四数相加 II383. 赎金信15. 三数之和18. 四数之和 242.有效的字母异位词 class Solution {public boolean isAnagram(String s, String t) {if(snull || tnull || s.length()!t.length()){return …...

绘图工具 draw.io / diagrams.net 免费在线图表编辑器

拓展阅读 常见免费开源绘图工具 OmniGraffle 创建精确、美观图形的工具 UML-架构图入门介绍 starUML UML 绘制工具 starUML 入门介绍 PlantUML 是绘制 uml 的一个开源项目 UML 等常见图绘制工具 绘图工具 draw.io / diagrams.net 免费在线图表编辑器 绘图工具 excalidr…...

【Vue】 Vue项目中的跨域配置指南

她坐红帐 面带浓妆 唢呐一声唱 明月光 这女子泪眼拜高堂 一拜天地日月 二拜就遗忘这一生 跪三拜红尘凉 庭院 大门锁上 杂乱的眼光 多喧嚷 这女子笑颜几惆怅 余生喜乐悲欢都无关 她眼中已无光 🎵 倪莫问《三拜红尘凉》 在前后端分离的项目开发中…...

跨站脚本攻击XSS

漏洞产生原因: XSS攻击本质上是一种注入攻击,产生原因是Web应用对外部输入参数处理不当,攻击者将恶意代码注入当前Web界面,在用户访问时执行 漏洞攻击手段: 反射型(非持久型)XSS-将payload包…...

C++中的vector与C语言中的数组的区别

C中的vector和C语言中的数组在很多方面都有所不同,以下是它们之间的一些主要区别: 大小可变性: vector是C标准模板库(STL)提供的动态数组容器,它的大小可以动态增长或减少。这意味着你可以在运行时添加或删…...

drawio画图编辑图形颜色

drawio画图编辑图形颜色 团队的安全第一图表。将您的存储空间带到我们的在线工具中,或使用桌面应用程序进行本地保存。 1.安装准备 1.1安装平台 多平台 1.2在线使用 浏览器打开网页使用 1.3软件下载 drawio官网github仓库下载 2.在浏览器的网页中使用drawio…...

uniapp中uni.navigateTo传递变量

效果展示: 核心代码: uniapp中uni.navigateTo传递变量 methods: {changePages(item) {setDatas("maintenanceFunName", JSON.stringify(item)).then((res) > {uni.navigateTo({url: /pages/PMS/maintenance/maintenanceTypes/maintenanceT…...

Spring Boot 构建war 部署到tomcat下无法在Nacos中注册服务

Spring Boot 构建war 部署到tomcat下无法在Nacos中注册服务 1. 问题2. 分析3. 解决方案参考 1. 问题 使用Nacos作为注册中心的Spring Boot项目,以war包形式部署到服务器上,启动项目发现该服务无法在Nacos中注册。 2. 分析 SpringCloud 项目打 war 包部…...

(2024,Attention-Mamba,MoE 替换 MLP)Jamba:混合 Transformer-Mamba 语言模型

Jamba: A Hybrid Transformer-Mamba Language Model 公和众和号:EDPJ(进 Q 交流群:922230617 或加 VX:CV_EDPJ 进 V 交流群) 目录 0. 摘要 1. 简介 2. 模型架构 3. 收获的好处 3.1 单个 80GB GPU 的 Jamba 实现 …...

“Java泛型” 得所憩,落日美酒聊共挥

本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人能接…...

【kafka】Golang实现分布式Masscan任务调度系统

要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

Linux基础开发工具——vim工具

文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...

js 设置3秒后执行

如何在JavaScript中延迟3秒执行操作 在JavaScript中&#xff0c;要设置一个操作在指定延迟后&#xff08;例如3秒&#xff09;执行&#xff0c;可以使用 setTimeout 函数。setTimeout 是JavaScript的核心计时器方法&#xff0c;它接受两个参数&#xff1a; 要执行的函数&…...

python打卡第47天

昨天代码中注意力热图的部分顺移至今天 知识点回顾&#xff1a; 热力图 作业&#xff1a;对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图&#xff0c;展示模…...

Linux入门课的思维导图

耗时两周&#xff0c;终于把慕课网上的Linux的基础入门课实操、总结完了&#xff01; 第一次以Blog的形式做学习记录&#xff0c;过程很有意思&#xff0c;但也很耗时。 课程时长5h&#xff0c;涉及到很多专有名词&#xff0c;要去逐个查找&#xff0c;以前接触过的概念因为时…...