当前位置: 首页 > news >正文

YOLOV8注意力改进方法:DoubleAttention(附代码)

原论文地址:原论文地址

 DoubleAttention网络结构的优点在于,它能够有效地捕获图像中不同位置和不同特征的重要性,从而提高了图像识别和分割的性能。 

论文相关内容介绍:

论文摘要:学习捕捉远程关系是图像/视频识别的基础。现有的CNN模型通常依赖于增加深度来建模这种关系,这是非常低效的。在这项工作中,我们提出了“双注意块”,这是一种新的组件,它从输入图像/视频的整个时空空间中聚集和传播信息全局特征,使后续卷积层能够有效地从整个空间中访问特征。该组件采用双注意机制,分两步进行设计,第一步通过二阶注意池将整个空间的特征聚集成一个紧凑的集合,第二步通过另一个注意自适应地选择特征并将其分配到每个位置。所提出的双注意块易于采用,并且可以方便地插入现有的深度神经网络中。我们对图像和视频识别任务进行了广泛的消融研究和实验,以评估其性能。在图像识别任务上,配备我们的双注意力块的ResNet-50在ImageNet-1k数据集上的性能优于更大的ResNet-152架构,参数数量减少了40%以上,FLOPs也减少了。在动作识别任务上,我们提出的模型在Kinetics和UCF-101数据集上取得了最先进的结果,效率显著高于最近的工作。

  A2-Net与SENet有点类似,但是不同点在于它的第一个注意力操作隐式地计算池化特征的二阶统计,并能捕获SENet中使用的全局平均池化无法捕获的复杂外观和运动相关性;

2.yolov8加入DoubleAttention的步骤:

2.1 在/ultralytics/nn/modules/block.py添加代码到末尾


class DoubleAttention(nn.Module):def __init__(self, in_channels,c_m=128,c_n=128,reconstruct = True):super().__init__()self.in_channels=in_channelsself.reconstruct = reconstructself.c_m=c_mself.c_n=c_nself.convA=nn.Conv2d(in_channels,c_m,1)self.convB=nn.Conv2d(in_channels,c_n,1)self.convV=nn.Conv2d(in_channels,c_n,1)if self.reconstruct:self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size = 1)self.init_weights()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, x):b, c, h,w=x.shapeassert c==self.in_channelsA=self.convA(x) #b,c_m,h,wB=self.convB(x) #b,c_n,h,wV=self.convV(x) #b,c_n,h,wtmpA=A.view(b,self.c_m,-1)attention_maps=F.softmax(B.view(b,self.c_n,-1))attention_vectors=F.softmax(V.view(b,self.c_n,-1))# step 1: feature gatingglobal_descriptors=torch.bmm(tmpA,attention_maps.permute(0,2,1)) #b.c_m,c_n# step 2: feature distributiontmpZ = global_descriptors.matmul(attention_vectors) #b,c_m,h*wtmpZ=tmpZ.view(b,self.c_m,h,w) #b,c_m,h,wif self.reconstruct:tmpZ=self.conv_reconstruct(tmpZ)return tmpZ

 2.2 在/ultralytics/nn/modules/block.py的头部all里面将”DoubleAttention"加入到末尾

__all__ = ("DFL","HGBlock","HGStem","SPP","SPPF","C1","C2","C3","C2f","C2fAttn","ImagePoolingAttn","ContrastiveHead","BNContrastiveHead","C3x","C3TR","C3Ghost","GhostBottleneck","Bottleneck","BottleneckCSP","Proto","RepC3","ResNetLayer","RepNCSPELAN4","ADown","SPPELAN","CBFuse","CBLinear","Silence","DoubleAttention",)
2.3在/ultralytics/nn/modules/__init__.py的头部
from .block import (

里面将”CoTAttention"加入到末尾

from .block import (C1,C2,C3,C3TR,DFL,SPP,SPPF,Bottleneck,BottleneckCSP,C2f,C2fAttn,ImagePoolingAttn,C3Ghost,C3x,GhostBottleneck,HGBlock,HGStem,Proto,RepC3,ResNetLayer,ContrastiveHead,BNContrastiveHead,RepNCSPELAN4,ADown,SPPELAN,CBFuse,CBLinear,Silence,DoubleAttention,
)
 2.4 在/ultralytics/nn/tasks.py
from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, 
Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,Concat, Conv,ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, 
Focus,GhostBottleneck, GhostConv, Segment, DoubleAttention)

def parse_model(d, ch, verbose=True):  加入以下代码:

elif m is DoubleAttention:c1, c2 = ch[f], args[0]if c2 != nc:c2 = make_divisible(min(c2, max_channels) * width, 8)args = [c1, *args[1:]]
2.5 yolov8_DoubleAttention.yaml
# Ultralytics YOLO 🚀, GPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 4  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [-1, 1, DoubleAttention, [1024]] - [[15, 18, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

相关文章:

YOLOV8注意力改进方法:DoubleAttention(附代码)

原论文地址:原论文地址 DoubleAttention网络结构的优点在于,它能够有效地捕获图像中不同位置和不同特征的重要性,从而提高了图像识别和分割的性能。 论文相关内容介绍: 论文摘要:学习捕捉远程关系是图像/视频识别的…...

每日一题 --- 前 K 个高频元素[力扣][Go]

前 K 个高频元素 题目:347. 前 K 个高频元素 给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。 示例 1: 输入: nums [1,1,1,2,2,3], k 2 输出: [1,2]示例 2: 输入: nums [1], k 1 输出: …...

Rust所有权和Move关键字使用和含义讲解,以及Arc和Mutex使用

Rust 所有权规则 一个值只能被一个变量所拥有,这个变量被称为所有者。 一个值同一时刻只能有一个所有者,也就是说不能有两个变量拥有相同的值。所以对应变量赋值、参数传递、函数返回等行为,旧的所有者会把值的所有权转移给新的所有者&#…...

【YOLOV5 入门】——构建自己的数据集模型训练模型检验

一、准备工作 1、数据收集 图片类型数据不用多说;视频类型数据利用opencv进行抽帧保存为一张张图片,这里选取30s的名侦探柯南片段进行试验,确保环境解释器下安装了opencv(我使用的是另一个虚拟环境): im…...

MacBook 访达使用技巧【mac 入门】

快捷键 打开访达搜索窗口默认快捷键【⌥ ⌘ 空格键】可以在键盘【系统偏好设置 -> 键盘->快捷键->聚焦】修改 但是我不会去修改它,因为我不常用访达的搜索窗口,更多的是想快速打开访达文件夹窗口,可以通过第三方软件定义访达的快…...

常见溯源,反溯源,判断蜜罐手段

常见溯源,反溯源,判断蜜罐手段 1.溯源手段2.反溯源手段3.如何判断蜜罐🍯4.案例:MySQL读文件蜜罐 1.溯源手段 IP地址追踪:通过IP地址追踪可以确定攻击者的地理位置和ISP信息等;通过攻击IP历史解析记录/域名…...

蓝桥杯刷题-09-三国游戏-贪心⭐⭐⭐

蓝桥杯2023年第十四届省赛真题-三国游戏 小蓝正在玩一款游戏。游戏中魏蜀吴三个国家各自拥有一定数量的士兵X, Y, Z (一开始可以认为都为 0 )。游戏有 n 个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第 i 个事件发生时会分别让 X, Y,…...

Windows编译运行TensorRT-YOLOv9 (C++)

Windows编译运行yolov9-bytetrack-tensorrt(C) 1 基础环境2 编译yolov9-bytetrack-tensorrt(1)下载yolov9-bytetrack-tensorrt源码(2)修改CMakeLists.txt(3)CMake编译 3 yolov9模型转…...

.NET 设计模式—简单工厂(Simple Factory Pattern)

简介 简单工厂模式(Simple Factory Pattern)属于类的创建型模式,又叫静态工厂方法模式(Static FactoryMethod Pattern),是通过一个工厂类来创建对象,根据不同的参数或条件返回相应的对象实例。这种模式隐藏…...

聊聊Linux内核中内存模型

介绍 在Linux中二进制的程序从磁盘加载到内存,运行起来后用户态是使用pid来唯一标识进程,对于内核都是以task_struct表示。二进制程序中的数据段、代码段、堆都能提现在task_struct中。每一个进程都有自己的虚拟地址空间,虚拟地址空间包含几…...

docker自动化部署示例

前提 安装docker 、 docker-cpmpose、git、打包环境(如meaven、jdk、node等) 原理 git Dockerfile docker-compose 获取源码(代码仓库)获取可运行程序的镜像(docker)将打包后的程序放入镜像内&#xf…...

Redis精品案例解析:Redis实现持久化主要有两种方式

Redis实现持久化主要有两种方式:RDB(Redis DataBase)和AOF(Append Only File)。这两种方式各有优缺点,适用于不同的使用场景。 1. RDB持久化 RDB持久化是通过创建一个二进制的dump文件来保存当前Redis数据…...

Python | Leetcode Python题解之第14题最长公共前缀

题目: 题解: class Solution:def longestCommonPrefix(self, strs: List[str]) -> str:def isCommonPrefix(length):str0, count strs[0][:length], len(strs)return all(strs[i][:length] str0 for i in range(1, count))if not strs:return &quo…...

烧坏两块单片机,不知道原因?

没有看你的原理图,以下是造成烧毁芯片的几个环节: 1. 最大的可能性是你的单片机电机控制输出与电机驱动电路没有隔离。 我的经验,使用STM32控制电机,无论是直流电机脉宽调制,还是步进电机控制,控制电路与…...

SV学习笔记(八)

文章目录 SV入门练习基本数据类型字符串类型数组类型接口的定义与例化类的封装类的继承package的使用随机约束线程的同步线程的控制虚方法方法(任务与函数)SV用于设计 参考资料 SV入门练习 基本数据类型 有符号无符号、四状态双状态、枚举类型、结构体…...

Java反射常用方法

反射 作用: 对于任意一个对象,把对象所有的字段名和值,保存到文件中去利用反射动态的创造对象和运行方法 1. 获取字节码文件对象 方法描述Class.forName(String)通过类的全限定名字符串获取字节码文件对象。类字面量直接使用类的字面量获…...

go语言实现无头单向链表

什么是无头单向链表 无头单向链表是一种线性数据结构,它的每个元素都是一个节点,每个节点都有一个指向下一个节点的指针。"无头"意味着这个链表没有一个特殊的头节点,链表的第一个节点就是链表的头。 优点: 动态大小&…...

SpringBoot快速入门笔记(5)

文章目录 一、elemetnUI1、main.js2、App.vue3、fontAwesome 一、elemetnUI 开源前端框架,安装 npm i element-ui -S 建议查看官方文档 Element组件,这里是Vue2搭配elementUI,如果是vue3就搭配elementPlus,这里初学就以Vue2为例子…...

solidity(3)

地址类型 pragma solidity ^0.8.0;contract AddressExample {// 地址address public _address 0x7A58c0Be72BE218B41C608b7Fe7C5bB630736C71;address payable public _address1 payable(_address); // payable address,可以转账、查余额// 地址类型的成员uint256…...

笔记 | 编译原理L1

重点关注过程式程序设计语言编译程序的构造原理和技术 1 程序设计语言 1.1 依据不同范型 过程式(Procedural programming languages–imperative)函数式(Functional programming languages–declarative)逻辑式(Logical programming languages–declarative)对象式(Object-or…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制&#xff0…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络&#xf…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

Linux中INADDR_ANY详解

在Linux网络编程中&#xff0c;INADDR_ANY 是一个特殊的IPv4地址常量&#xff08;定义在 <netinet/in.h> 头文件中&#xff09;&#xff0c;用于表示绑定到所有可用网络接口的地址。它是服务器程序中的常见用法&#xff0c;允许套接字监听所有本地IP地址上的连接请求。 关…...