当前位置: 首页 > news >正文

文心一言上线声音定制功能;通义千问开源模型;openAI又侵权?

文心一言上线定制专属声音功能

百度旗下 AI 聊天机器人文心一言上线新功能,用户录音一句话,即可定制声音。

使用这项功能需要使用文心一言 App。在创建智能体中,点击创建自己的声音,朗读系统提示的一句话,等候几秒钟时间,系统就能捕捉到用户的声音特点,生成用户个人专属声音。

在专属语音库构建完成后,与智能体的每一次对话,都可以使用自己的音色进行语音播报。

阿里通义千问开源 320 亿参数模型

昨日,通义千问开源其 320 亿参数模型 Qwen1.5-32B。

据介绍,这一模型旨在对标最先进的 30 亿参数模型所设定的性能基准,同时,也提升了 Qwen1.5-32B-Chat 对话模型的对话能力。Qwen1.5-32B 系列模型的内存占用比 72B 模型大幅减少,运行速度显著提升。

通义千问此前已开源 5 亿、18 亿、40 亿、70 亿、140 亿和 720 亿参数 6 款大语言模型。

OpenAI 疑似转录超一百万小时 YouTube 视频训练 GPT-4

《纽约时报》报道,OpenAI 为了得到高质量的 AI 训练数据,开发了一个音频转录模型「Whisper」,转录了超过 100 万个小时的 YouTube 视频来训练大语言模型 GPT-4。

据悉,OpenAI 知道这可能会存在法律风险,但是依然认为这是「合理使用」。《泰晤士报》报道称,OpenAI 总裁 Greg Brockman 亲自参与了这些被使用视频的收集。

Google 回应称,他们已经看到了有关 OpenAI 这些活动未经证实的报告。此前,YouTube CEO Neal Mohan 回应 OpenAI 疑似使用 YouTube 视频训练其视频生成工具 Sora 时表示,暂时没有直接证据能够证明 OpenAI 有相关行为。

相关文章:

文心一言上线声音定制功能;通义千问开源模型;openAI又侵权?

文心一言上线定制专属声音功能 百度旗下 AI 聊天机器人文心一言上线新功能,用户录音一句话,即可定制声音。 使用这项功能需要使用文心一言 App。在创建智能体中,点击创建自己的声音,朗读系统提示的一句话,等候几秒钟时…...

课时89:流程控制_函数进阶_函数变量

2.1.4 综合案例 这一节,我们从 信息采集、环境部署、小结 三个方面来学习。 信息采集 脚本实践-采集系统负载信息 查看脚本内容 [rootlocalhost ~]# cat function_systemctl_load.sh #!/bin/bash # 功能:采集系统负载信息 # 版本:v0.3 # …...

Linux命令-dpkg-preconfigure命令(Debian Linux中软件包安装之前询问问题)

说明 dpkg-preconfigure命令 用于在Debian Linux中软件包安装之前询问问题。 语法 dpkg-preconfigure(选项)(参数)选项 -f:选择使用的前端; -p:感兴趣的最低的优先级问题; --apt:在apt模式下运行。参数 软件包&am…...

SEO优化艺术:精细化技巧揭示与搜索引擎推广全面战略解读

SEO(搜索引擎优化,Search Engine Optimization)是一种网络营销策略,旨在通过改进网站内外的各项元素,提升网站在搜索引擎自然搜索结果中的排名,从而吸引更多目标用户访问网站,增加流量&#xff…...

《springcloud alibaba》 四 seata安装以及使用

目录 准备调整db配置准备创建数据库 seata配置nacos配置confi.txt下载向nacos推送配置的脚本 启动seata新建项目order-seata项目 订单项目数据库脚本pom.xmlapplication.yml启动类实体类dao类service类controller类feign类mapper类 stock-seata 库存项目数据库脚本pom.xmlappli…...

-bash: cd: /etc/hadoop: 没有那个文件或目录

解决办法:source /etc/profile 运行 source /etc/profile 命令会重新加载 /etc/profile 文件中的配置,这样做的目的是使任何更改立即生效,而不需要注销并重新登录用户。通常,/etc/profile 文件包含系统范围的全局 Shell 配置&…...

JVM字节码与类加载——字节码指令集与解析

文章目录 1、概述1.1、字节码与数据类型1.2、指令分类 2、加载与存储指令2.1、局部变量入栈指令2.2、常量入栈指令2.3、出栈装入局部变量表指令 3、算术指令3.1、彻底理解i与i3.2、比较指令 4、类型转换指令4.1、宽化类型转换4.2、窄化类型转换 5、对象、数组的创建与访问指令5…...

景芯2.5GHz A72训练营dummy添加(一)

景芯A72做完布局布线之后导出GDS,然后进行GDS merge,然后用Calibre对Layout添加Dummy。在28nm以及之前的工艺中,Dummy metal对Timing的影响不是很大,当然Star RC也提供了相应的解决方案,可以考虑Dummy metal来抽取RC。…...

React - 请你说一说setState是同步的还是异步的

难度级别:中高级及以上 提问概率:70% 在React项目中,使用setState可以更新状态数据,而不能直接使用为this.state赋值的方式。而为了避免重复更新state数据,React首先将state添加到状态队列中,此时我们可以通过shouldComponentUpdate这个钩…...

设计模式之命令模式(下)

2)完整解决方案 1.结构图 FBSettingWindow是“功能键设置”界面类,FunctionButton充当请求调用者,Command充当抽象命令类,MinimizeCommand和HelpCommand充当具体命令类,WindowHanlder和HelpHandler充当请求接收者。 …...

【opencv】示例-demhist.cpp 调整图像的亮度和对比度,并在GUI窗口中实时显示调整后的图像以及其直方图。...

#include "opencv2/core/utility.hpp" // 包含OpenCV核心工具库的头文件 #include "opencv2/imgproc.hpp" // 包含OpenCV图像处理的头文件 #include "opencv2/imgcodecs.hpp" // 包含OpenCV图像编码解码的头文件 #include "opencv2/highgui…...

计算机网络---第三天

OSI参考模型与TCP/IP模型 参考模型产生背景: 背景:①兼容性较差,接口不统一 ②不利于排错与维护 ③设备成本高 参考模型概念: 概念:OSI参考模型定义了网络中设备所遵守的层次结构 参考模型优点: 优点…...

怎么防止文件被拷贝,复制别人拷贝电脑文件

怎么防止文件被拷贝,复制别人拷贝电,脑文件 防止文件被拷贝通常是为了保护敏感数据、知识产权或商业秘密不被未经授权的人员获取或传播。以下列出了一系列技术手段和策略,可以帮助您有效地防止文件被拷贝。 1. 终端管理软件: 如安企神、域智…...

流式密集视频字幕

流式密集视频字幕 摘要1 IntroductionRelated Work3 Streaming Dense Video Captioning Streaming Dense Video Captioning 摘要 对于一个密集视频字幕生成模型,预测在视频中时间上定位的字幕,理想情况下应该能够处理长的输入视频,预测丰富、…...

【教程】iOS Swift应用加固

🔒 保护您的iOS应用免受恶意攻击!在本篇博客中,我们将介绍如何使用HTTPCORE DES加密来加固您的应用程序,并优化其安全性。通过以下步骤,您可以确保您的应用在运行过程中不会遭受数据泄露和未授权访问的风险。 摘要 …...

新型基础设施建设(新基建)

新型基础设施建设(新基建)主要包括七个方面,即5G基站建设、特高压、城际高速铁路和城市轨道交通、新能源汽车充电桩、大数据中心、人工智能和工业互联网。 以下是新型基础设施的详细内容: 一、5G基站建设。5G网络的扩展和优化&a…...

蓝桥杯 第 9 场 小白入门赛 字符迁移

题目&#xff1a; 3.字符迁移【算法赛】 - 蓝桥云课 (lanqiao.cn) 思路&#xff1a; 此题通过把小写字母映射成数字&#xff0c;进行差分即可。 AC代码&#xff1a; #include<iostream> #include<cstring> #include<algorithm>using namespace std;typed…...

泰迪智能科技人工智能应用工程师(中级)特训营

随着人工智能技术的迅猛发展和应用的不断拓展&#xff0c;掌握人工智能技术已成为现代职业发展和企业创新的关键。为此&#xff0c;人工智能技能提升特训营应运而生&#xff0c;以全面、系统的课程设置&#xff0c;帮助学员深入掌握相关的理论知识&#xff0c;实践操作技能。特…...

【数据结构】考研真题攻克与重点知识点剖析 - 第 6 篇:图

前言 本文基础知识部分来自于b站&#xff1a;分享笔记的好人儿的思维导图与王道考研课程&#xff0c;感谢大佬的开源精神&#xff0c;习题来自老师划的重点以及考研真题。此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析&#xff0c;本人技术…...

java的基本数据类型

在Java编程语言中&#xff0c;基本数据类型是构成Java程序的基础元素&#xff0c;它们用于存储简单值。Java的基本数据类型可以分为两大类&#xff1a;原始类型&#xff08;Primitive Types&#xff09;和引用类型&#xff08;Reference Types&#xff09;。原始类型包括整型、…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...