论文笔记:Large Language Models as Analogical Reasoners
iclr 2024 reviewer打分5558
1 intro
- 基于CoT prompt的大模型能够更好地解决复杂推理问题
- 然而传统CoT需要提供相关的例子作为指导,这就增加了人工标注的成本
- ——>Zero-shot CoT避免了人工标注来引导推理
- 但是对于一些复杂的任务难以完成推理,例如code generation
- ——>论文提出一种“归纳学习”的提示方法
- 首先设计prompt让大模型生成出与当前问题比较相关的问题和答案,以辅助问答提出的问题
2 preliminary
-
给定一个问题x
-
首先通过prompt将问题映射到文本输入ϕ ( x )
-
zero-shot ϕ ( x ) 就是x zero-shot CoT ϕ ( x ) 是[x] think step by step few-shot CoT ϕ ( x ) 是[x]和一些带label的例子
,即
[x1][r1][a1].....[xK][rK][aK][x]
-
-
任务目标是调用LLM解决这个问题【生成目标答案y】
-
生成的目标答案可以包含reasoning path r【推理过程】和答案a
-
-
3 方法
3.1 Self-Generated Exemplars
- 让大模型从在训练阶段掌握的problem-solving knowledge中生成出相关的问题和解决方法
3.1.1 prompt举例
3.1.2 大模型给的答案
大模型先生成出3个相关的且互不相同的problem,并给出相应的解决方案,然后再对目标问题进行解决。
3.1.3 self-generated instruction的三个核心部分
- 明确地让大模型生成相关且不同的样例。
- 因为大模型会偏向于重复地生成一些经典的问题,导致误导
- single-pass VS independent exemplar generation
- 所谓single-pass,就是直接prompt,让模型生成3个样例
- independent exemplar generation:让模型生成若干样例,然后采样3个样例,之后再重新设计prompt让大模型进行生成
- ——>通过实验,发现single-pass效果最好
- 生成的样例数量:3~5最佳
3.2 Self-generated Knowledge + Exemplars
- 对于像代码生成等复杂的任务,3.1这样的案例生成方法不一定能过让模型很好地解决此类问题
- ——>论文提出一种high-level generation方法。通过设计如下指令来实现:
- 【让模型先思考选择什么algorithm,以及algorithm对应的tutorial】
有点类似于:论文笔记:Take a Step Back:Evoking Reasoning via Abstraction in Large Language Models-CSDN博客的后退一步?
3.2.1 prompt 案例
3.2.2 大模型给的答案
4 实验
4.1 实验任务
- 数学问题:GSM8K、MATH等;
- 代码生成:动态规划、图算法等复杂的编程题
4.2 效果比较
4.2.1 数学问题
4.2.2 代码生成
4.3 few-shot example 数量的异同
相关文章:

论文笔记:Large Language Models as Analogical Reasoners
iclr 2024 reviewer打分5558 1 intro 基于CoT prompt的大模型能够更好地解决复杂推理问题 然而传统CoT需要提供相关的例子作为指导,这就增加了人工标注的成本——>Zero-shot CoT避免了人工标注来引导推理 但是对于一些复杂的任务难以完成推理,例如c…...
第3章 数据定义语言DDL
文章目录 第3章 DDL语言:数据定义语言3.1 MySQL的数据类型3.2 表的创建:create3.3 表的删除:drop3.4 快速创建表3.5 快速删除表中的数据:truncate3.6 修改表结构:alter 第5章 约束5.1 非空约束:not null5.2…...

C#操作MySQL从入门到精通(7)——对查询数据进行简单过滤
前言 我们在查询数据库中数据的时候,有时候需要剔除一些我们不想要的数据,这时候就需要对数据进行过滤,比如学生信息中,我只需要年龄等于18的,类似这种操作,本文就是详细介绍如何对查询的数据进行初步的过滤。 1、等于操作符 本次查询student_age 等于20的数据,使用我…...

【CVE复现计划】CVE-2024-0195
CVE-2024-0195 简介: SpiderFlow是新一代开源爬虫平台,以图形化方式定义爬虫流程,不写代码即可完成爬虫。基于springbootlayui开发的前后端不分离,也可以进行二次开发。该系统/function/save接口存在RCE漏洞,攻击者可以构造恶意命…...

k8s的ca以及相关证书签发流程
k8s的ca以及相关证书签发流程 1. kube-apiserver相关证书说明2. 生成CA凭证1.1. 生成CA私钥1.2. 生成CA证书 2. 生成kube-apiserver凭证2.1. 生成kube-apiserver私钥2.2. 生成kube-apiserver证书请求2.3. 生成kube-apiserver证书 3. 疑问和思考4. 参考文档 对于网站类的应用&am…...

思迈特软件与上海德拓签署战略合作协议,携手赋能企业数字化转型
3月27日,广州思迈特软件有限公司(简称“思迈特软件”)与上海德拓信息技术有限公司(简称“德拓信息”)正式签约建立战略合作伙伴关系。双方将在数字化转型、数据服务、数据应用以及市场资源等多个领域展开深度合作&…...

【快捷部署】015_Minio(latest)
📣【快捷部署系列】015期信息 编号选型版本操作系统部署形式部署模式复检时间015MiniolatestCentOS 7.XDocker单机2024-04-09 一、快捷部署 #!/bin/bash ################################################################################# # 作者:c…...
<网络安全>《72 微课堂<什么是靶场?>》
1 简介 网络安全靶场是一种模拟真实网络环境的技术或平台。 网络安全靶场基于虚拟化技术,能够模拟网络架构、系统设备、业务流程的运行状态及运行环境,用于支持网络安全相关的学习、研究、检验、竞赛和演习等活动,旨在提高人员及机构的网络…...

Golang | Leetcode Golang题解之第18题四数之和
题目: 题解: func fourSum(nums []int, target int) (quadruplets [][]int) {sort.Ints(nums)n : len(nums)for i : 0; i < n-3 && nums[i]nums[i1]nums[i2]nums[i3] < target; i {if i > 0 && nums[i] nums[i-1] || nums[i]…...

自动驾驶中的传感器融合算法:卡尔曼滤波器和扩展卡尔曼滤波器
自动驾驶中的传感器融合算法:卡尔曼滤波器和扩展卡尔曼滤波器 附赠自动驾驶学习资料和量产经验:链接 介绍: 追踪静止和移动的目标是自动驾驶技术领域最为需要的核心技术之一。来源于多种传感器的信号,包括摄像头,雷达…...

基于ssm的星空游戏购买下载平台的设计与实现论文
摘 要 随着科学技术的飞速发展,各行各业都在努力与现代先进技术接轨,通过科技手段提高自身的优势,商品交易当然也不能排除在外,随着商品交易管理的不断成熟,它彻底改变了过去传统的经营管理方式,不仅使商品…...

DSOX6004A是德科技DSOX6004A示波器
181/2461/8938产品概述: 特点: 是德科技DSOX6004A具有7合1集成功能,结合了数字通道、串行协议分析、内置双通道波形发生器、频率响应分析、内置数字万用表和带累加器的内置10位计数器。1千兆赫至6千兆赫4个模拟通道在12.1英寸电容式多点触摸屏上轻松查…...
golang 使用 cipher、aes 实现 oauth2 验证
在Go语言中,crypto/cipher包提供了加密和解密消息的功能。这个包实现了各种加密算法,如AES、DES、3DES、RC4等,以及相应的模式,如ECB、CBC、CFB、OFB、CTR等。以下是如何使用crypto/cipher包进行加密和解密操作的基本步骤…...

LLMs之FreeGPT35:FreeGPT35的简介、安装和使用方法、案例应用之详细攻略
LLMs之FreeGPT35:FreeGPT35的简介、安装和使用方法、案例应用之详细攻略 目录 FreeGPT35的简介 FreeGPT35的安装和使用方法 1、部署和启动服务 Node 2、使用 Docker 部署服务: 运行 Docker 容器以部署服务 使用 Docker Compose 进行更方便的容器化…...

【力扣一刷】代码随想录day32(贪心算法part2:122.买卖股票的最佳时机II、55. 跳跃游戏、45.跳跃游戏II )
目录 【122.买卖股票的最佳时机II】中等题 方法一 贪心算法 方法二 动态规划 【55. 跳跃游戏】中等题 【尝试】 递归 (超时) 方法 贪心算法 【45.跳跃游戏II】中等题 方法 贪心算法 【122.买卖股票的最佳时机II】中等题(偏简单࿰…...

安卓远离手机app
软件介绍 远离手机是专门为防止年轻人上瘾而打造的生活管理类的软件,适度用手机,保护眼睛,节约时间。 下载 安卓远离手机app...

yolov5旋转目标检测遥感图像检测-无人机旋转目标检测(代码和原理)
YOLOv5(You Only Look Once version 5)是一个流行且高效的实时目标检测深度学习模型,最初设计用于处理图像中的水平矩形边界框目标。然而,对于旋转目标检测,通常需要对原始YOLOv5架构进行扩展或修改,以便能…...

云手机提供私域流量变现方案
当今数字营销领域,私域流量是一座巨大的金矿,然而并非人人能够轻易挖掘。一家营销公司面临着利用社交、社区、自媒体等应用积累私域流量,并通过销售产品、推送广告等方式实现流量变现的挑战与困境。本文将详细介绍这家公司是如何通过云手机&a…...

树的基本概念与二叉树
文章目录 树的基本概念与二叉树一、树的概念和结构1. 树的概念2. 树的相关概念 二、树的存储1. 左孩子右兄弟表示法2. 双亲表示法 三、二叉树1. 特殊的二叉树1.1 满二叉树1.2 完全二叉树 树的基本概念与二叉树 一、树的概念和结构 1. 树的概念 树是一种非线性的数据结构,它是…...
什么是物理服务器?
物理服务器又叫做独立服务器,指物理上的单独服务器,是有着实体的服务器并不是虚拟的,物理服务器也可以理解成一台超大的电脑,但是对于普通的家用电脑来说,物理服务器需要长期处于开机的状态,对于硬件性能消…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...

C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...