PyTorch之计算模型推理时间
一、参考资料
如何测试模型的推理速度
Pytorch 测试模型的推理速度
二、计算PyTorch模型推理时间
1. 计算CPU推理时间
import torch
import torchvision
import time
import tqdm
from torchsummary import summarydef calcCPUTime():model = torchvision.models.resnet18()model.eval()# summary(model, input_size=(3, 224, 224), device="cpu")dummy_input = torch.randn(1, 3, 224, 224)num_iterations = 1000 # 迭代次数# 预热, GPU 平时可能为了节能而处于休眠状态, 因此需要预热print('warm up ...\n')with torch.no_grad():for _ in range(100):_ = model(dummy_input)print('testing ...\n')total_forward_time = 0.0 # 使用time来测试# 记录开始时间start_event = time.time()with torch.no_grad():for _ in tqdm.tqdm(range(num_iterations)):start_forward_time = time.time()_ = model(dummy_input)end_forward_time = time.time()forward_time = end_forward_time - start_forward_timetotal_forward_time += forward_time * 1000 # 转换为毫秒# 记录结束时间end_event = time.time()elapsed_time = (end_event - start_event) # 转换为秒fps = num_iterations / elapsed_timeelapsed_time_ms = elapsed_time / (num_iterations * dummy_input.shape[0])avg_forward_time = total_forward_time / (num_iterations * dummy_input.shape[0])print(f"FPS: {fps}")print("elapsed_time_ms:", elapsed_time_ms * 1000)print(f"Avg Forward Time per Image: {avg_forward_time} ms")if __name__ == "__main__":calcCPUTime()
输出结果
warm up ...testing ...100%|██████████| 1000/1000 [00:09<00:00, 102.13it/s]
FPS: 102.11109490533485
elapsed_time_ms: 9.793255090713501
Avg Forward Time per Image: 9.777164697647095 ms
CPU资源占用情况

2. 计算GPU推理时间
方法一
import torch
import torchvision
import time
import tqdm
from torchsummary import summarydef calcGPUTime():model = torchvision.models.resnet18()model.cuda()model.eval()# summary(model, input_size=(3, 224, 224), device="cuda")dummy_input = torch.randn(1, 3, 224, 224).cuda()num_iterations = 1000 # 迭代次数# 预热, GPU 平时可能为了节能而处于休眠状态, 因此需要预热print('warm up ...\n')with torch.no_grad():for _ in range(100):_ = model(dummy_input)print('testing ...\n')total_forward_time = 0.0 # 使用time来测试# 记录开始时间start_event = time.time() * 1000with torch.no_grad():for _ in tqdm.tqdm(range(num_iterations)):start_forward_time = time.time()_ = model(dummy_input)end_forward_time = time.time()forward_time = end_forward_time - start_forward_timetotal_forward_time += forward_time * 1000 # 转换为毫秒# 记录结束时间end_event = time.time() * 1000elapsed_time = (end_event - start_event) / 1000.0 # 转换为秒fps = num_iterations / elapsed_timeelapsed_time_ms = elapsed_time / (num_iterations * dummy_input.shape[0])avg_forward_time = total_forward_time / (num_iterations * dummy_input.shape[0])print(f"FPS: {fps}")print("elapsed_time_ms:", elapsed_time_ms * 1000)print(f"Avg Forward Time per Image: {avg_forward_time} ms")if __name__ == "__main__":calcGPUTime()
输出结果
warm up ...testing ...100%|██████████| 1000/1000 [00:01<00:00, 727.79it/s]
FPS: 727.1527832145586
elapsed_time_ms: 1.375226806640625
Avg Forward Time per Image: 1.3709843158721924 ms
GPU资源占用情况

方法二
import torch
import torchvision
import numpy as np
import tqdm# TODO - 计算模型的推理时间
def calcGPUTime():device = 'cuda:0'model = torchvision.models.resnet18()model.to(device)model.eval()repetitions = 1000dummy_input = torch.rand(1, 3, 224, 224).to(device)# 预热, GPU 平时可能为了节能而处于休眠状态, 因此需要预热print('warm up ...\n')with torch.no_grad():for _ in range(100):_ = model(dummy_input)# synchronize 等待所有 GPU 任务处理完才返回 CPU 主线程torch.cuda.synchronize()# 设置用于测量时间的 cuda Event, 这是PyTorch 官方推荐的接口,理论上应该最靠谱starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)# 初始化一个时间容器timings = np.zeros((repetitions, 1))print('testing ...\n')with torch.no_grad():for rep in tqdm.tqdm(range(repetitions)):starter.record()_ = model(dummy_input)ender.record()torch.cuda.synchronize() # 等待GPU任务完成curr_time = starter.elapsed_time(ender) # 从 starter 到 ender 之间用时,单位为毫秒timings[rep] = curr_timeavg = timings.sum() / repetitionsprint('\navg={}\n'.format(avg))if __name__ == '__main__':calcGPUTime()
输出结果
warm up ...testing ...100%|██████████| 1000/1000 [00:01<00:00, 627.50it/s]avg=1.4300348817110062
GPU资源占用情况

相关文章:
PyTorch之计算模型推理时间
一、参考资料 如何测试模型的推理速度 Pytorch 测试模型的推理速度 二、计算PyTorch模型推理时间 1. 计算CPU推理时间 import torch import torchvision import time import tqdm from torchsummary import summarydef calcCPUTime():model torchvision.models.resnet18()…...
layui后台框架,将左侧功能栏目 集中到一个页面,通过上面的tab切换 在iframe加载对应页面
实现上面的 功能效果。 1 html代码 <form class"layui-form layui-form-pane" action""><div class"layui-tab" lay-filter"demo"><ul class"layui-tab-title"><li id"a0" class"lay…...
【网络原理】使用Java基于TCP搭建简单客户端与服务器通信
目录 🎄API介绍🌸ServerSocket API🌸Socket API 🍀TCP中的长短连接🌳建立TCP回显客户端与服务器🌸TCP搭建服务器🌸TCP搭建客户端 ⭕总结 TCP服务器与客户端的搭建需要借助以下API 🎄…...
Hadoop生态系统主要是什么?
Hadoop生态系统主要由以下几部分组成: Hadoop HDFS:这是Hadoop的核心组件之一,是一个用于存储大数据的分布式文件系统。它可以在廉价的硬件上提供高度的容错性,通过数据复制和故障切换实现数据的高可用性。 MapReduce:…...
GlusterFS分布式文件系统
前言 存储可分为文件存储和对象存储,常见的文件存储相关技术有:nfs、lvm、raid;常见的对象存储相关技术有:gfs、ceph、fdfs、nas、oss、s3、switch。GlusterFS 归类为文件存储系统,它提供了一种强大的方式来管理和存储…...
spark本地模拟多个task时如何启动多个Excutor
1、首先在9090端口下启动Excutor,作为第一个Excutor 2、然后修改9090端口为:9091,如下图点击Edit Configration 3、然后按下图操作 , 4、修改一下名字 5、点击apply,🆗 6、检查下面圈1是否是刚刚我们新建的MyExcutor(2…...
RocketMQ笔记(八)SpringBoot整合RocketMQ广播消费消息
目录 一、简介1.1、消费模式 二、消费者2.1、maven依赖2.2、application配置2.3、消费监听 三、生产者3.1、发送消息3.2、运行结果 四、其他 一、简介 在之前的文章中,我们讲过了,同步发送单条消息,异步发送单条消息,发送单向消息…...
Appium如何自动判断浏览器驱动
问题:有的测试机chrome是这个版本,有的是另一个版本,怎么能让自动判断去跑呢?? 解决办法:使用appium的chromedriverExecutableDir和chromedriverChromeMappingFile 切忌使用chromedriverExecutableDir和c…...
MVCC-多版本并发控制
MVCC(多版本并发控制)简介 在数据库系统中,并发控制是一个非常重要的话题。为了提高系统的并发性能和吞吐量,现代数据库系统通常使用多种技术来实现对数据的安全访问,其中一种重要的技术就是多版本并发控制࿰…...
c++找最高成绩
根据给定的程序,写成相关的成员函数,完成指定功能。 函数接口定义: 定义max函数,实现输出最高成绩对应的学号以及最高成绩值。 裁判测试程序样例: #include <iostream> using namespace std; class Student{…...
前端saas化部署
在项目中难免会遇到一些特殊的需求,例如同一套代码需要同时部署上两个不同的域名A和B。A和B的不同之处仅在于,例如一些背景图片,logo,展示模块的不同,其他业务逻辑是和展示模块是完全一样的。此时我们当然可以考虑单独…...
[Java基础揉碎]Math类
目录 基本介绍 方法一览(均为静态方法) 1) abs 绝对值 2) pow 求幂 3) ceil 向上取整 4) floor 向下取整 5) round 四舍五入 6) sqrt 求开方 7) random求随机数 8) max 求两个数的最大值 9) min 求两个数的最小值 基本介绍 Math类包含用于执行基本数学运算的方法&…...
MyBatis输入映射
1 parameterType parameterType:接口中方法参数的类型,类型必须是完全限定名或别名(稍后讲别名)。该属性非必须,因为Mybatis框架能自行判断具体传入语句的参数,默认值为未设置(unset)。<sel…...
金三银四,程序员求职季
随着春天的脚步渐近,对于许多程序员来说,一年中最繁忙、最重要的面试季节也随之而来。金三银四,即三月和四月,被广大程序员视为求职的黄金时期。在这两个月里,各大公司纷纷开放招聘,求职者们则通过一轮又一…...
[react优化] 避免组件或数据多次渲染/计算
代码如下 点击视图x➕1,导致视图更新, 视图更细导致a也重新大量计算!!这很浪费时间 function App() {const [x, setX] useState(3)const y x 2console.log(重新渲染, x, y);console.time(timer)let a 0for (let index 0; index < 1000000000; index) {a}console.timeE…...
「意」起出发 丨意大利OXO城市展厅盛大启幕,成都设计圈共襄盛举
4月8日,主题为“「意」起出发「智」见OXO”的意大利OXO城市展厅发布会在成都大悦城OXO成都城市展厅隆重举办。 大会现场,成都装饰协会领导,喜尔康董事长吴锡山,天合智能副董事长罗洁,意大利OXO卫浴市场部总监兰彬&…...
你不知道的JavaScript---深入理解 JavaScript 作用域
你好,我是小白Coding日志,一个热爱技术的程序员。在这里,我分享自己在编程和技术世界中的学习心得和体会。希望我的文章能够给你带来一些灵感和帮助。欢迎来到我的博客,一起在技术的世界里探索前行吧! 1. 什么是作用域…...
FPGA(Verilog)实现按键消抖
实现按键消抖功能: 1.滤除按键按下时的噪声和松开时的噪声信号。 2.获取已消抖的按键按下的标志信号。 3.实现已消抖的按键的连续功能。 Verilog实现 模块端口 key_filter(input wire clk ,input wire rst_n ,input wire key_in , //按下按键时为0output …...
第十二届蓝桥杯大赛软件赛省赛C/C++大学B组
第十二届蓝桥杯大赛软件赛省赛C/C 大学 B 组 文章目录 第十二届蓝桥杯大赛软件赛省赛C/C 大学 B 组1、空间2、卡片3、直线4、货物摆放5、路径6、时间显示7、砝码称重8、杨辉三角形9、双向排序10、括号序列 1、空间 1MB 1024KB 1KB 1024byte 1byte8bit // cout<<"2…...
面了钉钉搜广增算法岗(暑期实习),秒挂。。。。
节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 汇总…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
ubuntu22.04 安装docker 和docker-compose
首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
命令行关闭Windows防火墙
命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)方法二:CMD命令…...
