当前位置: 首页 > news >正文

负荷预测 | Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测;
2.单变量时间序列数据集,采用前12个时刻预测未来96个时刻的数据;
3.excel数据方便替换,运行环境matlab2023及以上,展示最后96个时间步的预测对比图,评价指标MAE、MAPE、RMSE、MSE、R2;
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

TCN(Temporal Convolutional Network,时间卷积网络):TCN是一种卷积神经网络结构,专门用于处理时间序列数据。它通过堆叠一系列的1D卷积层和残差连接来捕捉时间序列中的长期依赖关系。每个卷积层的输出都会被送入下一个卷积层或者其他组件进行进一步处理。

GRU(Gated Recurrent Unit,门控循环单元):GRU是一种循环神经网络结构,用于处理序列数据。它通过门控机制来控制信息的流动和遗忘,从而更好地捕捉序列中的依赖关系。GRU模型可以将TCN的输出作为输入,并根据当前输入和前一个时间步的隐藏状态来生成下一个时间步的隐藏状态。

Attention(注意力机制):注意力机制用于加强模型对序列中不同位置的重要性的关注。通过计算每个时间步的注意力权重,模型可以自动学习并关注序列中最相关的部分。在TCN-GRU模型中,可以使用注意力机制来进一步提取和整合TCN和GRU的输出,以便更好地进行多步预测。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
end
lgraph = connectLayers(lgraph,outputName,"flatten");
lgraph = connectLayers(lgraph,"flatten","gru1");
lgraph = connectLayers(lgraph,"flatten","flip3");
lgraph = connectLayers(lgraph,"gru1","concat/in1");
lgraph = connectLayers(lgraph,"gru2","concat/in2");%  参数设置
options0 = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', 150, ...                            % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', 0.01, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod',100, ...                   % 训练100次后开始调整学习率'LearnRateDropFactor',0.001, ...                    % 学习率调整因子'L2Regularization', 0.001, ...         % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 1, ...                                 % 关闭优化过程'Plots', 'none');                    % 画出曲线

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

负荷预测 | Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测; 2.单变量时间序列数据集,采用前12个时刻预测未来96个时刻的数据; 3.excel数据方便替换,运行环境matlab20…...

SpringBoot整合Spring Data JPA

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉🍎个人主页:Leo的博客💞当前专栏: 循序渐进学SpringBoot ✨特色专栏: MySQL学习 🥭本文内容: SpringBoot整合Spring Data JPA 📚个人知识库: Leo知识库,欢迎大家访问 1.…...

机器学习(五) -- 监督学习(2) -- k近邻

系列文章目录及链接 目录 前言 一、K近邻通俗理解及定义 二、原理理解及公式 1、距离度量 四、接口实现 1、鸢尾花数据集介绍 2、API 3、流程 3.1、获取数据 3.2、数据预处理 3.3、特征工程 3.4、knn模型训练 3.5、模型评估 3.6、结果预测 4、超参数搜索-网格搜…...

【.NET全栈】ZedGraph图表库的介绍和应用

文章目录 一、ZedGraph介绍ZedGraph的特点ZedGraph的缺点使用注意事项 二、ZedGraph官网三、ZedGraph的应用四、ZedGraph的高端应用五、、总结 一、ZedGraph介绍 ZedGraph 是一个用于绘制图表和图形的开源.NET图表库。它提供了丰富的功能和灵活性,可以用于创建各种…...

vivado 设计调试

设计调试 对 FPGA 或 ACAP 设计进行调试是一个多步骤迭代式流程。与大多数复杂问题的处理方式一样 , 最好先将 FPGA 或 ACAP 设计调试流程细分为多个小部分 , 以便集中精力使设计中的每一小部分能逐一正常运行 , 而不是尝试一次性让整 个…...

Python3 replace()函数使用详解:字符串的艺术转换

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …...

【C++】用红黑树封装map和set

我们之前学的map和set在stl源码中都是用红黑树封装实现的,当然,我们也可以模拟来实现一下。在实现之前,我们也可以看一下stl源码是如何实现的。我们上篇博客写的红黑树里面只是一个pair对象,这对于set来说显然是不合适的&#xff…...

一些好玩的东西

这里写目录标题 递归1.递归打印数组和链表?代码实现原理讲解二叉树的 前 中 后 序位置 参考文章 递归 1.递归打印数组和链表? 平常我们打印数组和链表都是 迭代 就好了今天学到一个新思路–>不仅可以轻松正着打印数组和链表 , 还能轻松倒着打印(用的是二叉树的前中后序遍…...

微电网优化:基于巨型犰狳优化算法(Giant Armadillo Optimization,GAO)的微电网优化(提供MATLAB代码)

一、微电网优化模型 微电网是一个相对独立的本地化电力单元,用户现场的分布式发电可以支持用电需求。为此,您的微电网将接入、监控、预测和控制您本地的分布式能源系统,同时强化供电系统的弹性,保障您的用电更经济。您可以在连接…...

java锁

乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,采取在写时先读出…...

QA测试开发工程师面试题满分问答6: 如何判断接口功能正常?从QA的角度设计测试用例

判断接口功能是否正常的方法之一是设计并执行相关的测试用例。下面是从测试QA的角度设计接口测试用例的一些建议,包括功能、边界、异常、链路、上下游和并发等方面: 通过综合考虑这些测试维度,并设计相应的测试用例,可以更全面地评估接口的功能、性能、安全性、数据一致…...

vue 双向绑定

双向绑定:双方其中一方改变,另外一方也会跟着改变。 data() { return {inputValue: ,list: [],message: hello,checked: true,radio: ,select: [],options: [{text: A, value:{value: A}},{text: B, value:{value: B}},{text: C, value:{value: C}}], }…...

python--异常处理

异常处理 例一: try: #可能出现异常代码 except: #如果程序异常,则立刻进入这儿 [finally: #不管是否捕获异常,finally语法快必须要执行!!! #资源关闭,等各种非常重要的操作&…...

element-ui result 组件源码分享

今日简单分享 result 组件的源码实现,主要从以下三个方面: 1、result 组件页面结构 2、result 组件属性 3、result 组件 slot 一、result 组件页面结构 二、result 组件属性 2.1 title 属性,标题,类型 string,无默…...

VRRP虚拟路由实验(思科)

一,技术简介 VRRP(Virtual Router Redundancy Protocol)是一种网络协议,用于实现路由器冗余,提高网络可靠性和容错能力。VRRP允许多台路由器共享一个虚拟IP地址,其中一台路由器被选为Master,负…...

SpringBoot通用模块--文件上传开发(阿里云OSS)

文件上传,是指将本地图片、视频、音频等文件上传到服务器上,可以供其他用户浏览或下载的过程。文件上传在项目中应用非常广泛,我们经常发抖音、发朋友圈都用到了文件上传功能。 实现文件上传服务,需要有存储的支持,那…...

Fecify 商品标签功能

关于商品标签 商品标签是指商家可以在展示商品时,自己创建一个自定义标签,可自定义某个关键词或短语。这样顾客在浏览商城时,只需要通过标签就能看到更直观的展示信息。 商品标签可以按照用户的属性、行为、偏好等进行分类,标签要…...

openstack中windows虚拟机时间显示异常问题处理

文章目录 一、问题描述二、元数据信息总结 一、问题描述 openstack创建出windows虚拟机的时候,发现时间和当前时间相差8小时,用起来很难受。 参考:https://www.cnblogs.com/hraa0101/p/11365238.html 二、元数据信息 通过设置镜像的元数据…...

很牛的一套仓库管理系统,免费复用【带源码】

今天给大家分享一套基于SpringbootVue的仓库管理系统源码,在实际项目中可以直接复用。(免费提供,文末自取) ​一、系统运行图(设计报告和接口文档) 1、登陆页面 2、物品信息管理 3、设计报告包含接口文档 二、系统搭建视频教程 …...

Spark 部署与应用程序交互简单使用说明

文章目录 前言步骤一:下载安装包Spark的目录和文件 步骤二:使用Scala或PySpark Shell本地 shell 运行 步骤3:理解Spark应用中的概念Spark Application and SparkSessionSpark JobsSpark StagesSpark Tasks 转换、立即执行操作和延迟求值窄变换和宽变换 S…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...