【C++】C++中的list
一、介绍
官方给的 list的文档介绍
简单来说就是:
list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素。
这个时候大家可能觉得,都是有序列表,那么和vector有什么区别和对比吗?实际上和我们学习数据结构时对链表和数组的对比很像,我来介绍一下:
std::list
| std::vector
|
那么list到底长什么样子呢?上图片,是不是就好理解了
二、list的使用
作为STL(标准模板库)中的一个类,我们这篇blog的任务就是学习其的使用。
构造函数
构造函数 | 接口说明 |
list() | 构造空的list |
list (size_type n, const value_type& val = value_type()) | 构造的list中包含n个值为val的元素 |
list (const list& x) | 拷贝构造函数 |
list (InputIterator first, InputIterator last) | 用[first, last)区间中的元素构造list |
上面虽然用了不少代名词,我们直接上代码例子分析自然就清楚了,分析在代码中。
(如果迭代器看不懂可以看这一篇【C++】C++中的vector-CSDN博客,里面详细介绍了)
#include <iostream>
#include <list>
using namespace std;
int main()
{//list<int> l1; // 构造空的l1list<int> l2(4, 100); // l2中放4个值为100的元素list<int> l3(l2.begin(), l2.end()); // 用l2的[begin(), end())左闭右开的区间构造l3list<int> l4(l3); // 用l3拷贝构造l4// 以数组为迭代器区间构造l5int array[] = { 16,2,77,29 };std::list<int> l5(array, array + sizeof(array) / sizeof(int));// 用迭代器方式打印l5中的元素for (std::list<int>::iterator it = l5.begin(); it != l5.end(); it++)std::cout << *it << " ";std::cout << endl;// C++11范围for的方式遍历for (auto& e : l5)std::cout << e << " ";std::cout << endl;return 0;
}
其实我们可以看出来,list这个类和之前的使用类的方法是基本一致的,不过他需要一个<int>来确定这个序列容器的类型,比如int,char....,就是list<int>可以当成一个整体,和vector很像。
list iterator的使用
函数声明 | 接口说明 |
begin + end | 获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置 的iterator/const_iterator |
rbegin + rend | 获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的 reverse_iterator |
PS:
#include <iostream>
#include <list>
using namespace std;void print_list(const list<int>& l)
{// 注意这里调用的是list的 begin() const,返回list的const_iterator对象// 保护数据通过将l声明为常量引用,我们保证了在print_list函数内部无法修改列表l的内容。// 这意味着无法添加、删除或修改列表中的任何元素。这是一种良好的编程实践,// 特别是当函数的目的仅仅是读取数据而不修改数据时。for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it){cout << *it << " ";//如果不同const 就通过//*it = 10; 编译不通过}cout << endl;
}
int main()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array + sizeof(array) / sizeof(array[0]));// 使用正向迭代器正向list中的元素for (list<int>::iterator it = l.begin(); it != l.end(); ++it)cout << *it << " ";cout << endl;// 使用反向迭代器逆向打印list中的元素for (list<int>::reverse_iterator it = l.rbegin(); it != l.rend(); ++it)cout << *it << " ";cout << endl;return 0;
}
常用的成员方法
list capacity
函数声明 | 接口说明 |
empty | 检测 list 是否为空,是返回 true ,否则返回 false |
size | 返回 list 中有效节点的个数 |
列表元素访问
函数声明 | 接口说明 |
empty | 检测 list 是否为空,是返回 true ,否则返回 false |
size | 返回 list 中有效节点的个数 |
list modifiers
函数声明 | 接口说明 |
push_front | 在list首元素前插入值为val的元素 |
pop_front | 删除list中第一个元素 |
push_back | 在list尾部插入值为val的元素 |
pop_back | 删除list中最后一个元素 |
insert | 在list position 位置中插入值为val的元素 |
erase | 删除list position位置的元素 |
swap | 交换两个list中的元素 |
clear | 清空list中的有效元素 |
#include <iostream>
#include <list>
#include <vector>
using namespace std;
void PrintList(list<int>& l)
{for (auto& e : l)cout << e << " ";cout << endl;
}
//===============================================================
// push_back/pop_back/push_front/pop_front
void TestList1()
{cout << "TestList1()" << endl;int array[] = { 1, 2, 3 };list<int> L(array, array + sizeof(array) / sizeof(array[0]));// 在list的尾部插入4,头部插入0L.push_back(4);L.push_front(0);PrintList(L);// 删除list尾部节点和头部节点L.pop_back();L.pop_front();PrintList(L);
}
//================================================================
// insert /erase
void TestList2()
{cout << "TestList2()" << endl;int array1[] = { 1, 2, 3 };list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));// 获取链表中第二个节点auto pos = ++L.begin();cout << *pos << endl;// 在pos前插入值为4的元素L.insert(pos, 4);PrintList(L);// 在pos前插入5个值为5的元素L.insert(pos, 5, 5);PrintList(L);// 在pos前插入[v.begin(), v.end)区间中的元素vector<int> v {7, 8, 9 };L.insert(pos, v.begin(), v.end());PrintList(L);// 删除pos位置上的元素L.erase(pos);PrintList(L);// 删除list中[begin, end)区间中的元素,即删除list中的所有元素L.erase(L.begin(), L.end());PrintList(L);
}
// resize/swap/clear
void TestList3()
{cout << "TestList3()" << endl;// 用数组来构造listint array1[] = { 1, 2, 3 };list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));PrintList(l1);// 交换l1和l2中的元素list<int> l2;l1.swap(l2);PrintList(l1);PrintList(l2);
//使用resize将l2的大小先增加到5个元素,所有新添加的元素都将被赋值为99l2.resize(5, 99);PrintList(l2);// 将l2中的元素清空l2.clear();cout << l2.size() << endl;
}int main()
{TestList1();TestList2();TestList3();return 0;
}
好了,目前通过上面这一段精简的代码,我们把常用的成员方法基本解决了,但是list的成员方法实在太多,很多操作都是很特殊,不常见的,但是如果刚好需要又非常方便,所以就是可以在需要的时候查官方文档。
list的迭代器失效
在之前我们学习过vector的迭代器会有失效的情况,原因很简单,指针失效了,那么list会不会有这种情况呢?答案是有的,前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。所以影响相对vector来说比较小。
理解了吗?两段代码来检测一下大家
#include <iostream>
#include <list>
using namespace std;void TestListIterator1()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto it = l.begin();while (it != l.end()){l.erase(it);++it;}
}void TestListIterator2()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto it = l.begin();while (it != l.end()){l.erase(it++); // it = l.erase(it);}
}int main()
{TestListIterator1();TestListIterator2();return 0;
}
是 TestListIterator1 出错 还是 TestListIterator2 出错?
如果你一眼就看出了,那么恭喜你,你掌握了。
其实很简单,第一个当调用erase(it)
后,it
被删除,使得it
失效。尝试在失效的迭代器上进行操作(比如递增++it
)是未定义行为。
第二个,l.erase(it++)
:这里使用了“后置递增”运算符,它创建了it
的一个副本,然后将副本传递给erase
方法。erase
删除了当前迭代器指向的元素,然后it
被递增,指向下一个元素。因为it
在递增前已经复制给erase
,所以即使在删除当前元素后,递增操作是在一个新的、未被修改的迭代器上进行的,这保证了迭代器的有效性。或者可以这样写,等价的:it = l.erase(it);
:erase
函数返回下一个有效的迭代器,然后将其赋值给it
。这样,it
始终保持有效,且指向当前元素的下一个元素。
三、结语
到此为止,我们已经把list的基本使用方法学习结束了,list的成员方法十分丰富,这篇文章就是介绍了常用的,让大家基本会使用,目前你也可以用这种双向列表来实现一些复杂的算法,我在下面了可以给大家写一个。等我有时间再出一篇,模拟实现list的blog,理解他的底层实现,有缘再见,朋友!
实现的经典算法
约瑟夫环问题(Josephus Problem)。这个问题的一个版本可以描述如下:N个人围成一圈,从第一个人开始报数,每报到M时,该人被淘汰,接着从下一个人开始继续报数,直到所有人都被淘汰。任务是按顺序输出被淘汰人的编号。
#include <iostream>
#include <list>
using namespace std;void JosephusProblem(int N, int M) {// 初始化人员列表,编号从1到Nlist<int> people;for (int i = 1; i <= N; ++i) {people.push_back(i);}auto it = people.begin(); // 迭代器指向第一个人while (!people.empty()) {// 模拟报数,M-1次移动迭代器(因为从当前人开始报数)for (int count = 1; count < M; ++count) {++it;// 如果迭代器超过了末尾,重新从头开始if (it == people.end()) {it = people.begin();}}// 报到M,移除当前人,并输出编号cout << *it << " ";it = people.erase(it); // erase返回下一个元素的迭代器// 如果列表不为空,但迭代器已经到达末尾,需要重新指向开头if (it == people.end() && !people.empty()) {it = people.begin();}}cout << endl;
}int main() {int N = 7; // 人数int M = 3; // 报数淘汰JosephusProblem(N, M);return 0;
}
相关文章:

【C++】C++中的list
一、介绍 官方给的 list的文档介绍 简单来说就是: list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中…...

uniapp:Hbuilder没有检测到设备请插入设备或启动模拟器的问题解决
问题 使用模拟器调试运行项目时,出现以下提示,“没有检测到设备,请插入设备或启动模拟器后点击刷新再试”。排查了一天最终找到原因。 解决 已确认模拟器是已经正常启动,并且Hbuilder设置中的adb路径和端口都配置没有问题&#…...

基于RBF的时间序列预测模型matlab代码
整理了基于RBF的时间序列预测模型matlab代码, 包含数据集。采用了四个评价指标R2、MAE、MBE、MAPE对模型的进行评价。RBF模型在数据集上表现非常好。 训练集数据的R2为:0.99463 测试集数据的R2为:0.96973 训练集数据的MAE为:0.…...

vue vue3 手写 动态加载组件
效果展示 一、需求背景: # vue3 项目涉及很多图表加载、表格加载 #考虑手写一个动态加载组件 二、实现思路 通过一个加载状态变量,通过v-if判断,加载状态的变量等于哪一个,动态加载组件内部就显示的哪一块组件。 三、实现效果…...

HTML:表单
目录 案例: 一、form标签 二、input标签 三、textarea标签 四、select标签 五、fieldset 标签 案例: <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>报名表</title> </head> &l…...

即插即用篇 | YOLOv5/v7引入Haar小波下采样 | 一种简单而有效的语义分割下采样模块
本改进已集成到 YOLOv5-Magic 框架。 下采样操作如最大池化或步幅卷积在卷积神经网络(CNNs)中被广泛应用,用于聚合局部特征、扩大感受野并减少计算负担。然而,对于语义分割任务,对局部邻域的特征进行池化可能导致重要的空间信息丢失,这有助于逐像素预测。为了解决这个问题…...

Plonky2.5:在Plonky2中验证Plonky3 proof
1. 引言 Plonky2.5为QED Protocol团队主导的项目,定位为: 在Plonky2 SNARK中验证Plonky3 STARK proof。 从而实现Plonky系列的递归证明。 开源代码实现见: https://github.com/QEDProtocol/plonky2.5https://github.com/Plonky3/Plonky3&a…...

卷积通用模型的剪枝、蒸馏---剪枝篇(此处以deeplabv3+为例,可根据模型自行定制剪枝层)
之后的两篇文章是对前段时间工作的一个总结。 一、环境配置 1.1、文章以b导的代码为模板,环境配置比较简单(第二篇蒸馏篇结束后会放置剪枝蒸馏配置好的百度网盘链接),其他算法自行配置,在剪枝之前,需要保证算法能够在本地跑通。 B导链接: https://github.com/bubbliiiin…...

使用Ollama在本地运行AI大模型gemma
1.下载: https://github.com/ollama/ollama/releases 2.配置环境变量 我的电脑-右键-属性-系统-高级系统设置-环境变量-【系统环境变量】新建 变量名:OLLAMA_MODELS (固定变量名) 变量值:E:\Ollama\Lib ࿰…...
【IC前端虚拟项目】时序面积优化与综合代码出版本交付
【IC前端虚拟项目】数据搬运指令处理模块前端实现虚拟项目说明-CSDN博客 到目前为止,我们完成了第一版综合,那么就可以打开报告看一下了,一看就会发现在1GHz时钟下时序真的很差(毕竟虚拟项目里使用的工艺库还是比较旧的,如果用12nm、7mn会好很多): Timing Path Group cl…...

windows版本-idea中下载的java版本在哪
1、点击idea的file-projectStructure 进入: 通过电脑目录进入该目录 找到bin目录,copy该目录地址 copy下来之后设置到系统环境变量中...
设计模式:创建者模式
定义 创建者模式(Builder Pattern),又称建造者模式,是一种创建型设计模式,它提供了一种创建对象的最佳方式。该模式允许将一个复杂对象的构建与它的表示分离,这样同样的构建过程可以创建不同的表示。创建者…...

【linux】基础IO(四)
在上一篇基础IO中我们主要讲述了文件再磁盘中的存储,当然我们说的也都只是预备知识,为这一篇的文件系统进行铺垫。 目录 搭文件系统的架子:填补细节:inode:datablock[]: 更上层的理解: 搭文件系统的架子&a…...
集合框架(数组,Arrays.sort,list,map,set,stack,queue)蓝桥杯习题
前言(基本知识) List集合 有序,接口, List<引用数据类型> listnew ArrayList<>(); 方法: add() size() get()//索引index从0开始,返回对应的值 isEmpty()判断是否包含该元素,不包含返回true,包含返…...

【C++基础】运算符和流程控制语句
C中的运算符和流程控制语句 一、运算符1. C和Java在通用运算符中的不同之处对比2. C中的位运算符2.1 移位运算符2.2 位逻辑运算符 3. 运算时的类型转换总结3.1 隐式类型转换3.2 显式类型转换(强制类型转换) 4. 注意 二、流程控制语句1. C和Java在通用流程…...

AOF文件重写
1.2.3.AOF文件重写 因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。 如图&am…...
第四次面试总结 — 嘉和智能 - 全栈开发
🧸欢迎来到dream_ready的博客,📜相信您对专栏 “本人真实面经” 很感兴趣o (ˉ▽ˉ;) 专栏 —— 本人真实面经,更多真实面试经验,中大厂面试总结等您挖掘 目录 总结(非详细) 面试内…...
tx-lcn使用
tx-lcn是啥 tx-lcn是一个分布式事务框架,有两个模块组成管理端(server)和client端。 管理端用于分布式事务的注册,事务消息接收,事务消息下发等管理工作。 client端包括事务发起方,事务参与方。 LCN名称是…...
oracle恢复异常处理
问题现象: RMAN> 2> 3> 4> 5> 6> 7> 8> 9> 10> 11> 12> 13> 14> 15> 16> 17> 18> 19> 20> 21> 22> 23> 24> using target database control file instead of recovery catalog allocate…...

谈谈什么是 Redis
🔥博客主页:fly in the sky - CSDN博客 🚀欢迎各位:点赞👍收藏⭐️留言✍️🚀 🎆慢品人间烟火色,闲观万事岁月长🎆 📖希望我写的博客对你有所帮助,如有不足,请指正&#…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...

软件工程 期末复习
瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...