ML.NET(二) 使用机器学习预测表情分析
这个例子使用模型进行表情分析:
准备数据: happy,sad 等;

using Common;
using ConsoleApp2;
using Microsoft.ML;
using Microsoft.ML.Data;
using System.Diagnostics;
using static Microsoft.ML.Transforms.ValueToKeyMappingEstimator;/** 训练一个Happy 和Sad 等表情的模型并使用预测 图像分类器(Image Classification) * ***********************预测不是很准,数据集找对应人种数据可以尝试亚洲,欧美分开*/var projectDirectory = Path.GetFullPath(Path.Combine(AppContext.BaseDirectory, "./"));
var workspaceRelativePath = Path.Combine(projectDirectory, "workspace");
var assetsRelativePath = Path.Combine(projectDirectory, "assets");string outputMlNetModelFilePath = "model.zip";//Path.Combine("", "outputs", "imageClassifier.zip");
string imagesFolderPathForPredictions = Path.Combine("", "inputs", "test-images");
// 设置ML.NET环境
var mlContext = new MLContext();// 加载数据IEnumerable<ImageData> images = LoadImagesFromDirectory(folder: assetsRelativePath, useFolderNameAsLabel: true);
IDataView fullImagesDataset = mlContext.Data.LoadFromEnumerable(images);
IDataView shuffledFullImageFilePathsDataset = mlContext.Data.ShuffleRows(fullImagesDataset);// 3. Load Images with in-memory type within the IDataView and Transform Labels to Keys (Categorical)
IDataView shuffledFullImagesDataset = mlContext.Transforms.Conversion.MapValueToKey(outputColumnName: "LabelAsKey", inputColumnName: "Label", keyOrdinality: KeyOrdinality.ByValue).Append(mlContext.Transforms.LoadRawImageBytes(outputColumnName: "Image",imageFolder: assetsRelativePath,inputColumnName: "ImagePath")).Fit(shuffledFullImageFilePathsDataset).Transform(shuffledFullImageFilePathsDataset);// 4. Split the data 80:20 into train and test sets, train and evaluate.
var trainTestData = mlContext.Data.TrainTestSplit(shuffledFullImagesDataset, testFraction: 0.2);
IDataView trainDataView = trainTestData.TrainSet;
IDataView testDataView = trainTestData.TestSet;// 5. Define the model's training pipeline using DNN default values
//
var pipeline = mlContext.MulticlassClassification.Trainers.ImageClassification(featureColumnName: "Image",labelColumnName: "LabelAsKey",validationSet: testDataView).Append(mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName: "PredictedLabel",inputColumnName: "PredictedLabel"));
// Measuring training time
var watch = Stopwatch.StartNew();
Console.WriteLine($"--------------------开始训练-------------------------------");//6. Train
ITransformer trainedModel = pipeline.Fit(trainDataView);watch.Stop();
var elapsedMs = watch.ElapsedMilliseconds;Console.WriteLine($"--------------------训练用时: {elapsedMs / 1000} seconds --------------------");// 7. Get the quality metrics (accuracy, etc.)
EvaluateModel(mlContext, testDataView, trainedModel);8. Save the model to assets/outputs (You get ML.NET .zip model file and TensorFlow .pb model file)
mlContext.Model.Save(trainedModel, trainDataView.Schema, outputMlNetModelFilePath); //outputMlNetModelFilePath
Console.WriteLine($"Model saved to: {outputMlNetModelFilePath}");9. Try a single prediction simulating an end-user app
TrySinglePrediction(imagesFolderPathForPredictions, mlContext, trainedModel);static IEnumerable<ImageData> LoadImagesFromDirectory(string folder,bool useFolderNameAsLabel = true)=> FileUtils.LoadImagesFromDirectory(folder, useFolderNameAsLabel).Select(x => new ImageData(x.imagePath, x.label));static void EvaluateModel(MLContext mlContext, IDataView testDataset, ITransformer trainedModel)
{Console.WriteLine("Making predictions in bulk for evaluating model's quality...");// Measuring timevar watch = Stopwatch.StartNew();var predictionsDataView = trainedModel.Transform(testDataset);var metrics = mlContext.MulticlassClassification.Evaluate(predictionsDataView, labelColumnName: "LabelAsKey", predictedLabelColumnName: "PredictedLabel");ConsoleHelper.PrintMultiClassClassificationMetrics("TensorFlow DNN Transfer Learning", metrics);watch.Stop();var elapsed2Ms = watch.ElapsedMilliseconds;Console.WriteLine($"Predicting and Evaluation took: {elapsed2Ms / 1000} seconds");
}
static void TrySinglePrediction(string imagesFolderPathForPredictions, MLContext mlContext, ITransformer trainedModel)
{// Create prediction function to try one predictionvar predictionEngine = mlContext.Model.CreatePredictionEngine<InMemoryImageData, ImagePrediction>(trainedModel);var testImages = FileUtils.LoadInMemoryImagesFromDirectory(imagesFolderPathForPredictions, false);var imageToPredict = testImages.Last();var prediction = predictionEngine.Predict(imageToPredict);Console.WriteLine($"Image Filename : [{imageToPredict.ImageFileName}], " +$"Scores : [{string.Join(",", prediction.Score)}], " +$"Predicted Label : {prediction.PredictedLabel}");
}
// 定义数据结构
class ImageData
{public ImageData(string imagePath, string label){ImagePath = imagePath;Label = label;}public readonly string ImagePath;public readonly string Label;
}class ModelInput
{public byte[] Image { get; set; }public UInt32 LabelAsKey { get; set; }public string ImagePath { get; set; }public string Label { get; set; }
}
class ModelOutput
{public string ImagePath { get; set; }public string Label { get; set; }public string PredictedLabel { get; set; }
}
public class ImagePrediction
{[ColumnName("Score")]public float[] Score;[ColumnName("PredictedLabel")]public string PredictedLabel;
}

相关文章:
ML.NET(二) 使用机器学习预测表情分析
这个例子使用模型进行表情分析: 准备数据: happy,sad 等; using Common; using ConsoleApp2; using Microsoft.ML; using Microsoft.ML.Data; using System.Diagnostics; using static Microsoft.ML.Transforms.ValueToKeyMappingEstimator;…...
YOLOv9最新改进系列:YOLOv9改进之添加注意力-ContextAggregation,有效涨点!!!
YOLOv9最新改进系列:YOLOv9改进之添加注意力-ContextAggregation,有效涨点!!! YOLOv9原文链接戳这里,原文全文翻译请关注B站Ai学术叫叫首er B站全文戳这里! 详细的改进教程以及源码ÿ…...
【数据结构】初识数据结构与复杂度总结
前言 C语言这块算是总结完了,那从本篇开始就是步入一个新的大章——数据结构,这篇我们先来认识一下数据结构有关知识,以及复杂度的相关知识 个人主页:小张同学zkf 若有问题 评论区见 感兴趣就关注一下吧 目录 1.什么是数据结构 2.…...
子域名是什么?有什么作用?
在互联网世界中,域名是我们访问网站的关键。每一个公司的网站都需要拥有自己的域名,其中有些大型公司的网站还不止一个域名,除了主域名外还拥有子域名。有些人感到非常困惑,不知道子域名是什么。其实子域名也就是平时所说的二级域…...
学习 Rust 的第一天:基础知识
如果你对 Rust 一无所知,那我来解释一下。 “Rust 是一种系统编程语言,其优先考虑性能、内存安全和零成本抽象。” 你好,世界 我之前研究过 Rust,并且对 Java、C、C 和 Python 的基本编程概念有相当了解。 今天,我…...
电商技术揭秘七:搜索引擎中的SEO关键词策略与内容优化技术
文章目录 引言一、关键词策略1.1 关键词研究与选择1. 确定目标受众2. 使用关键词研究工具3. 分析搜索量和竞争程度4. 考虑长尾关键词5. 关键词的商业意图6. 创建关键词列表7. 持续监控和调整 1.2 关键词布局与密度1. 关键词自然分布2. 标题标签的使用3. 首次段落的重要性4. 关键…...
系统开发实训小组作业week7 —— 优化系统开发计划
目录 1. 建立规则,仪式,流程,模式 2. 给好行为正面的反馈 3. 明确指出不合适的行为,必要时调整人员 在 “系统开发实训课程” 中,我们小组的项目是 “电影院会员管理系统” 。在项目的开发过程中,我们遇…...
golang的引用和非引用总结
目录 概述 一、基本概念 指针类型(Pointer type) 非引用类型(值类型) 引用类型(Reference Types) 解引用(dereference) 二、引用类型和非引用类型的区别 三、golang数据类型…...
2024认证杯数学建模B题思路模型代码
目录 2024认证杯数学建模B题思路模型代码:4.11开赛后第一时间更新,获取见文末名片 第十三届“认证杯”数学中国数学建模比赛赛后体会 2024认证杯数学建模B题思路模型代码:4.11开赛后第一时间更新,获取见文末名片 第十三届“认证杯”数学中国数学建模比…...
一种快速移植 OpenHarmony Linux 内核的方法
移植概述 本文面向希望将 OpenHarmony 移植到三方芯片平台硬件的开发者,介绍一种借助三方芯片平台自带 Linux 内核的现有能力,快速移植 OpenHarmony 到三方芯片平台的方法。 移植到三方芯片平台的整体思路 内核态层和用户态层 为了更好的解释整个内核…...
java的jar包jakarta.jakartaee-web-api和jakarta.servlet-api有什么区别
jakarta.jakartaee-web-api和jakarta.servlet-api都是Java EE(现在是 Jakarta EE)中的一部分,用于开发基于Java EE平台的Web应用程序。它们之间的区别在于以下几点: 命名空间: jakarta.servlet-api是Java EE 8之前版本…...
QT_day2
使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数 将登录按钮使用qt4版本的连接到自定义的槽函数中,在槽函数中判断ui界面上输入的账号是否为"admin",密码是否为…...
Advanced RAG 02:揭开 PDF 文档解析的神秘面纱
编者按: 自 2023 年以来,RAG 已成为基于 LLM 的人工智能系统中应用最为广泛的架构之一。由于诸多产品的关键功能(如:领域智能问答、知识库构建等)严重依赖RAG,优化其性能、提高检索效率和准确性迫在眉睫&am…...
Spring面试题pro版-1
Spring框架是由于软件开发的复杂性而创建的。Spring使用的是基本的JavaBean来完成以前只可能由EJB完成的事情。然而,Spring的用途不仅仅限于服务器端的开发。从简单性、可测试性和松耦合性角度而言,绝大部分Java应用都可以从Spring中受益。 Spring是什么…...
6 Reverse Linked List
分数 20 作者 陈越 单位 浙江大学 Write a nonrecursive procedure to reverse a singly linked list in O(N) time using constant extra space. Format of functions: List Reverse( List L ); where List is defined as the following: typedef struct Node *PtrToNo…...
【随笔】Git 高级篇 -- 相对引用2 HEAD~n(十三)
💌 所属专栏:【Git】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! 💖 欢迎大…...
2024免费Mac电脑用户的系统清理和优化软件CleanMyMac
作为产品营销专家,对于各类产品的特性与优势有着深入的了解。CleanMyMac是一款针对Mac电脑用户的系统清理和优化软件,旨在帮助用户轻松管理、优化和保护Mac电脑。以下是关于CleanMyMac的详细介绍: CleanMyMac X2024全新版下载如下: https://…...
Centos7源码方式安装Elasticsearch 7.10.2单机版
版本选择参考:Elasticsearch如何选择版本-CSDN博客 下载 任选一种方式下载 官网7.10.2版本下载地址: https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.10.2-linux-x86_64.tar.gz 网盘下载链接 链接:https://pan…...
mysql的安装和部署
##官网下载mysql 我下载的是一个mysql-5.7.38-linux-glibc2.12-x86_64.tar.gz 可以通过xshell 或者xftp传送 xshell则是先下载一个lrzsz 执行以下的命令 yum install lrzsz -y #安装好我下面有个一键安装的脚本 #!/bin/bash#解决软件的依赖关系 yum install cmake ncurses…...
大数据基本名词
目录[-] 1.1. 1. Hadoop1.2. 2. Hive1.3. 3. Impala1.4. 4. Hbase1.5. 5.hadoop hive impala hbase关系1.6. 6. Spark1.7. 7. Flink1.8. 8. Spark 和 Flink 的应用场景 1. Hadoop 开源官网:https://hadoop.apache.org/ Hadoop是一个由Apache基金会所开发的分…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...
Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...
