当前位置: 首页 > news >正文

概率论基础——拉格朗日乘数法

概率论基础——拉格朗日乘数法

概率论是机器学习和优化领域的重要基础之一,而拉格朗日乘数法与KKT条件是解决优化问题中约束条件的重要工具。本文将简单介绍拉格朗日乘数法的基本概念、应用以及如何用Python实现算法。

1. 基本概念

拉格朗日乘数法是一种用来求解带约束条件的优化问题的方法。它将约束优化问题转化为一个无约束优化问题,并通过引入拉格朗日乘数来实现。拉格朗日乘数法的核心思想是在原始优化问题的基础上,引入拉格朗日乘子构造一个新的拉格朗日函数,然后通过对该函数求导,找到极值点,从而得到原始优化问题的解。

2. 拉格朗日乘数法

考虑带约束条件的优化问题:

minimize f ( x ) subject to g i ( x ) ≤ 0 , i = 1 , 2 , … , m h j ( x ) = 0 , j = 1 , 2 , … , p \begin{align*} \text{minimize} & \quad f(x) \\ \text{subject to} & \quad g_i(x) \leq 0, \quad i = 1, 2, \ldots, m \\ & \quad h_j(x) = 0, \quad j = 1, 2, \ldots, p \end{align*} minimizesubject tof(x)gi(x)0,i=1,2,,mhj(x)=0,j=1,2,,p

其中,(f(x))是目标函数,(g_i(x))是不等式约束,(h_j(x))是等式约束。使用拉格朗日乘数法,我们可以构造拉格朗日函数:

L ( x , λ , μ ) = f ( x ) + ∑ i = 1 m λ i g i ( x ) + ∑ j = 1 p μ j h j ( x ) L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x) L(x,λ,μ)=f(x)+i=1mλigi(x)+j=1pμjhj(x)

其中, λ i \lambda_i λi μ j \mu_j μj是拉格朗日乘子。然后,通过对拉格朗日函数求梯度,并令梯度等于零,我们可以求解极值点。这些点可能是潜在的最小值、最大值或鞍点。

3. 等式约束优化问题

对于只有等式约束的优化问题,我们可以使用拉格朗日乘数法来求解。考虑如下形式的优化问题:

minimize f ( x ) subject to h ( x ) = 0 \begin{align*} \text{minimize} & \quad f(x) \\ \text{subject to} & \quad h(x) = 0 \end{align*} minimizesubject tof(x)h(x)=0

构造拉格朗日函数:

L ( x , λ ) = f ( x ) + λ h ( x ) L(x, \lambda) = f(x) + \lambda h(x) L(x,λ)=f(x)+λh(x)

然后,求解梯度等于零的方程组:

∇ x L ( x , λ ) = 0 and ∇ λ L ( x , λ ) = 0 \nabla_x L(x, \lambda) = 0 \quad \text{and} \quad \nabla_\lambda L(x, \lambda) = 0 xL(x,λ)=0andλL(x,λ)=0

4. 不等式约束优化问题

对于带有不等式约束的优化问题,我们也可以使用拉格朗日乘数法。考虑如下形式的优化问题:

minimize f ( x ) subject to g ( x ) ≤ 0 \begin{align*} \text{minimize} & \quad f(x) \\ \text{subject to} & \quad g(x) \leq 0 \end{align*} minimizesubject tof(x)g(x)0

构造拉格朗日函数:

L ( x , λ ) = f ( x ) + λ g ( x ) L(x, \lambda) = f(x) + \lambda g(x) L(x,λ)=f(x)+λg(x)

然后,求解梯度等于零的方程:

∇ x L ( x , λ ) = 0 and λ g ( x ) = 0 \nabla_x L(x, \lambda) = 0 \quad \text{and} \quad \lambda g(x) = 0 xL(x,λ)=0andλg(x)=0

用Python实现算法

下面我们用Python实现一个简单的带等式约束的优化问题,并使用拉格朗日乘数法求解。

import numpy as np
from scipy.optimize import minimize# 定义目标函数
def objective(x):return (x[0] - 1) ** 2 + (x[1] - 2) ** 2# 定义等式约束函数
def constraint(x):return x[0] + x[1] - 3# 定义初始猜测值
x0 = np.array([0, 0])# 使用minimize函数求解
solution = minimize(objective, x0, constraints={'type': 'eq', 'fun': constraint})# 输出结果
print("Optimal solution:", solution.x)
print("Objective value at the solution:", solution.fun)

在这里插入图片描述

总结

拉格朗日乘数法是解决带约束条件的优化问题的重要方法之一。通过引入拉格朗日乘子,我们可以将原始问题转化为无约束问题,并通过求解新的拉格朗日函数的极值点来得到原始问题的解。然而,拉格朗日乘数法并不保证得到全局最优解,因此在实际应用中需要结合其他方法进行优化。

相关文章:

概率论基础——拉格朗日乘数法

概率论基础——拉格朗日乘数法 概率论是机器学习和优化领域的重要基础之一,而拉格朗日乘数法与KKT条件是解决优化问题中约束条件的重要工具。本文将简单介绍拉格朗日乘数法的基本概念、应用以及如何用Python实现算法。 1. 基本概念 拉格朗日乘数法是一种用来求解…...

[xboard]real6410-6.2 移植kernel网络驱动

文章目录 硬件电路软件配置问题1问题2问题3问题4功能测试硬件电路 核心板,使用DM9000A [图片] 软件配置 问题1 / # / # ifconfig ifconfig: /proc/net/dev: No such file or directory ifconfig: socket: Fun...

Quarkus初探

Quarkus初探 背景安装Quarkus安装Quarkus CLI 创建Quarkus项目运行Quarkus初探代码修改一下代码 数据持久化创建PanacheEntiry写入数据读取数据 Dev Service使用外部数据库区分dev和prod 构建native应用(依赖Graalvm) 背景 最早是在Infoq上了解到Quarku…...

90天玩转Python-02-基础知识篇:初识Python与PyCharm

90天玩转Python系列文章目录 90天玩转Python—01—基础知识篇:C站最全Python标准库总结 90天玩转Python--02--基础知识篇:初识Python与PyCharm 90天玩转Python—03—基础知识篇:Python和PyCharm(语言特点、学习方法、工具安装&…...

List操作的一些常见问题

1. Arrays.asList转换基本类型数组 在实际的业务开发中,我们通常会进行数组转List的操作,通常我们会使用Arrays.asList来进行转换,但是在转换基本类型的数组的时候,却出现转换的结果和我们想象的不一致。 import java.util.Arra…...

如何使用Java和RabbitMQ实现延迟队列?

前言 今天我们使用Java和RabbitMQ实现消息队列的延迟功能。 前期准备,需要安装好docker、docker-compose的运行环境。 需要安装RabbitMQ的可以看下面这篇文章。 如何使用PHP和RabbitMQ实现消息队列?-CSDN博客 今天讲的是依赖RabbitMQ的延迟插件实现…...

AI论文速读 | TF-LLM:基于大语言模型可解释性的交通预测

论文标题: Explainable Traffic Flow Prediction with Large Language Models 作者:Xusen Guo, Qiming Zhang, Mingxing Peng, Meixin Zhu(朱美新)*, Hao (Frank)Yang(杨昊) 机构:香港科技大学(广州),约翰…...

智慧矿山视频智能监控与安全监管方案

一、行业背景 随着全球能源需求的日益增长,矿业行业作为国民经济的重要支柱,其发展日益受到广泛关注。然而,传统矿山管理模式的局限性逐渐显现,如生产安全、人员监管、风险预警等方面的问题日益突出。因此,智慧矿山智…...

2024春算法训练4——函数与递归题解

一、前言 感觉这次的题目都很好,但是E题....(我太菜了想不到),别人的题解都上百行了,晕; 二、题解 A-[NOIP2010]数字统计_2024春算法训练4——函数与递归 (nowcoder.com) 这种题目有两种做法:…...

【C++】C++知识点复习

牛客cpp:牛客网在线编程 2024年4月10日:BC1—>BC8 BC4:浮点数精度保留 问题:不加入fixed输入0.359813,最后得到0.36,并不是强制保留0.360。这种写法会保留小数点后三位精度,但是最后输出会省略掉最后…...

SpringBoot+Vue,轻松实现网页版人脸登录与精准识别

目录 1、技术介绍 2、技术原理 2.1、人脸检测 ①参考模板法 ②人脸规则法 2.2、人脸跟踪 2.3、人脸比对 ①特征向量法 ②面纹模板法 识别过程 案例 一、springboot后端项目 1,拉取项目后,导入相关依赖jar包 2,执行sql文件夹下面…...

深入浅出 -- 系统架构之垂直架构

当业务复杂度增加、访问量逐渐增大出现高并发时,单体架构无法满足需求,可以根据业务功能对系统进行拆分,以提高访问效率。 垂直架构介绍 1.垂直架构一般是因为单体架构太过于庞大而进行的拆分,拆分后各个系统应满足独立运行互相不…...

深入浅出 -- 系统架构之微服务架构选型参考图

技术选型架构图 是一个用于展示项目中所采用的各种技术和组件之间关系的图表。 它通常包括以下几个部分: 1. 项目名称和描述:简要介绍项目的背景和目标。 2. 技术栈:列出项目中使用的主要技术和工具,如编程语言、框架、数据库…...

Java 使用 ant.jar 执行 SQL 脚本文件

Java 使用 ant.jar 执行 SQL 脚本文件&#xff0c;很简单。 在 pom.xml 中导入 ant 依赖 <dependency><groupId>org.apache.ant</groupId><artifactId>ant</artifactId><version>1.10.11</version> </dependency>sql 脚本文件…...

【随笔】Git 高级篇 -- 快速定位分支 ^|~(二十三)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…...

git环境切换

文章目录 一. 操作步骤&#xff1a;1.查看全局设置3.Git 切换本地git设置4.切换仓库并推送 一. 操作步骤&#xff1a; 1.查看全局设置 $ Git config --global --list credential.https://codeup.aliyun.com.providergeneric user.namebiejiahao user.emailxxxxxxxxqq.com3.Gi…...

hyperf websocket

composer require hyperf/websocket-server 配置 Server 修改 config/autoload/server.php&#xff0c;增加以下配置。 <?phpreturn [servers > [[name > ws,type > Server::SERVER_WEBSOCKET,host > 0.0.0.0,port > 9502,sock_type > SWOOLE_SOCK_TCP…...

用Echarts词云数据可视化热词表白​​

目录 1、使用前准备 2、准备工作 3、盒子搭建 4、整体展现 1、使用前准备 找到表白对象&#xff08;重中之重&#xff01;&#xff09;&#xff0c;不要一见钟情&#xff08;个人觉得&#xff1a;一见钟情属于见色起意&#xff01;&#xff09;&#xff0c;因为数据可视化需…...

VUE 实现路由的基本原理

路由 基本概念 在前端技术早期&#xff0c;所有页面的跳转通过更改url,浏览器页面刷新获取新的页面内容&#xff0c;这种粗糙的交互方式&#xff0c;一直等待优化。 后来&#xff0c;改变发生了——Ajax 出现了&#xff0c;它允许人们在不刷新页面的情况下发起请求&#xff0…...

Android 11 添加系统属性

在初识Android 属性一文中提到&#xff0c;系统会默认加载以下文件 /system/etc/prop.default /system/build.prop /system_ext/build.prop /vendor/default.prop /vendor/build.prop /odm/etc/build.prop /product/build.prop /factory/factory.prop要弄清楚我们应该在哪里添…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...