当前位置: 首页 > news >正文

分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析和改进蜣螂优化算法优化最小二乘支持向量机分类预测

分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析和改进蜣螂优化算法优化最小二乘支持向量机分类预测

目录

    • 分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析和改进蜣螂优化算法优化最小二乘支持向量机分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

Matlab实现KPCA-IDBO-LSSVM基于核主成分分析和改进蜣螂优化算法优化最小二乘支持向量机分类预测(可用于故障诊断等方面)MATLAB代码,运行环境matlab2018及以上。

❶含LSSVM、DBO-LSSVM、IDBO-LSSVM、KPCA-IDBO-LSSVM,四个模型的对比。经过降维后利用改进蜣螂算法优化LSSVM参数为:sig,gamma。

❷两个改进策略:

改进黄金正弦策略和改进位置更新动态权重系数可提高收敛率,促进算法寻优。

❸可出分类效果图,迭代优化图,混淆矩阵

❹代码中文注释清晰,质量极高

❺赠送数据集,可以直接运行源程序。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据私信博主回复Matlab实现KPCA-IDBO-LSSVM基于核主成分分析和改进蜣螂优化算法优化最小二乘支持向量机分类预测
function [Y, eigVec, eigVal] = kPCA(p_train, dim, type, para)%%  获取样本数目
N = size(p_train, 1);%%  核主成分分析
K0 = kernel(p_train, type, para);
oneN = ones(N, N) / N;%%  特征值分析
[V, D] = eig(K / N);
eigVal = diag(D);
[~, idx] = sort(eigVal, 'descend');
eigVal = eigVal(idx);%%  特征向量分析
eigVec = V(:, idx);
norm_eigVector = sqrt(sum(eigVec .^ 2));
eigVec = eigVec ./ repmat(norm_eigVector, size(eigVec, 1), 1);%%  降维
eigVec = eigVec(:, 1: dim);
Y = K0 * eigVec;end
%%  参数设置
%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);% %%  数据排序
% [T_train, index_1] = sort(T_train);
% [T_test , index_2] = sort(T_test );
% 
% T_sim1 = T_sim1(index_1);
% T_sim2 = T_sim2(index_2);%%  性能评价
error1 = sum((T_sim1 == T_train))/M * 100 ;
error2 = sum((T_sim2 == T_test)) /N * 100 ;%%  绘图
figure()         
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析和改进蜣螂优化算法优化最小二乘支持向量机分类预测

分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析和改进蜣螂优化算法优化最小二乘支持向量机分类预测 目录 分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析和改进蜣螂优化算法优化最小二乘支持向量机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述…...

与机器对话:ChatGPT 和 AI 语言模型的奇妙故事

原文:Talking to Machines: The Fascinating Story of ChatGPT and AI Language Models 译者:飞龙 协议:CC BY-NC-SA 4.0 从 ELIZA 到 ChatGPT:会话式人工智能的简史 会话式人工智能是人工智能(AI)的一个分…...

概率论基础——拉格朗日乘数法

概率论基础——拉格朗日乘数法 概率论是机器学习和优化领域的重要基础之一,而拉格朗日乘数法与KKT条件是解决优化问题中约束条件的重要工具。本文将简单介绍拉格朗日乘数法的基本概念、应用以及如何用Python实现算法。 1. 基本概念 拉格朗日乘数法是一种用来求解…...

[xboard]real6410-6.2 移植kernel网络驱动

文章目录 硬件电路软件配置问题1问题2问题3问题4功能测试硬件电路 核心板,使用DM9000A [图片] 软件配置 问题1 / # / # ifconfig ifconfig: /proc/net/dev: No such file or directory ifconfig: socket: Fun...

Quarkus初探

Quarkus初探 背景安装Quarkus安装Quarkus CLI 创建Quarkus项目运行Quarkus初探代码修改一下代码 数据持久化创建PanacheEntiry写入数据读取数据 Dev Service使用外部数据库区分dev和prod 构建native应用(依赖Graalvm) 背景 最早是在Infoq上了解到Quarku…...

90天玩转Python-02-基础知识篇:初识Python与PyCharm

90天玩转Python系列文章目录 90天玩转Python—01—基础知识篇:C站最全Python标准库总结 90天玩转Python--02--基础知识篇:初识Python与PyCharm 90天玩转Python—03—基础知识篇:Python和PyCharm(语言特点、学习方法、工具安装&…...

List操作的一些常见问题

1. Arrays.asList转换基本类型数组 在实际的业务开发中,我们通常会进行数组转List的操作,通常我们会使用Arrays.asList来进行转换,但是在转换基本类型的数组的时候,却出现转换的结果和我们想象的不一致。 import java.util.Arra…...

如何使用Java和RabbitMQ实现延迟队列?

前言 今天我们使用Java和RabbitMQ实现消息队列的延迟功能。 前期准备,需要安装好docker、docker-compose的运行环境。 需要安装RabbitMQ的可以看下面这篇文章。 如何使用PHP和RabbitMQ实现消息队列?-CSDN博客 今天讲的是依赖RabbitMQ的延迟插件实现…...

AI论文速读 | TF-LLM:基于大语言模型可解释性的交通预测

论文标题: Explainable Traffic Flow Prediction with Large Language Models 作者:Xusen Guo, Qiming Zhang, Mingxing Peng, Meixin Zhu(朱美新)*, Hao (Frank)Yang(杨昊) 机构:香港科技大学(广州),约翰…...

智慧矿山视频智能监控与安全监管方案

一、行业背景 随着全球能源需求的日益增长,矿业行业作为国民经济的重要支柱,其发展日益受到广泛关注。然而,传统矿山管理模式的局限性逐渐显现,如生产安全、人员监管、风险预警等方面的问题日益突出。因此,智慧矿山智…...

2024春算法训练4——函数与递归题解

一、前言 感觉这次的题目都很好,但是E题....(我太菜了想不到),别人的题解都上百行了,晕; 二、题解 A-[NOIP2010]数字统计_2024春算法训练4——函数与递归 (nowcoder.com) 这种题目有两种做法:…...

【C++】C++知识点复习

牛客cpp:牛客网在线编程 2024年4月10日:BC1—>BC8 BC4:浮点数精度保留 问题:不加入fixed输入0.359813,最后得到0.36,并不是强制保留0.360。这种写法会保留小数点后三位精度,但是最后输出会省略掉最后…...

SpringBoot+Vue,轻松实现网页版人脸登录与精准识别

目录 1、技术介绍 2、技术原理 2.1、人脸检测 ①参考模板法 ②人脸规则法 2.2、人脸跟踪 2.3、人脸比对 ①特征向量法 ②面纹模板法 识别过程 案例 一、springboot后端项目 1,拉取项目后,导入相关依赖jar包 2,执行sql文件夹下面…...

深入浅出 -- 系统架构之垂直架构

当业务复杂度增加、访问量逐渐增大出现高并发时,单体架构无法满足需求,可以根据业务功能对系统进行拆分,以提高访问效率。 垂直架构介绍 1.垂直架构一般是因为单体架构太过于庞大而进行的拆分,拆分后各个系统应满足独立运行互相不…...

深入浅出 -- 系统架构之微服务架构选型参考图

技术选型架构图 是一个用于展示项目中所采用的各种技术和组件之间关系的图表。 它通常包括以下几个部分: 1. 项目名称和描述:简要介绍项目的背景和目标。 2. 技术栈:列出项目中使用的主要技术和工具,如编程语言、框架、数据库…...

Java 使用 ant.jar 执行 SQL 脚本文件

Java 使用 ant.jar 执行 SQL 脚本文件&#xff0c;很简单。 在 pom.xml 中导入 ant 依赖 <dependency><groupId>org.apache.ant</groupId><artifactId>ant</artifactId><version>1.10.11</version> </dependency>sql 脚本文件…...

【随笔】Git 高级篇 -- 快速定位分支 ^|~(二十三)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…...

git环境切换

文章目录 一. 操作步骤&#xff1a;1.查看全局设置3.Git 切换本地git设置4.切换仓库并推送 一. 操作步骤&#xff1a; 1.查看全局设置 $ Git config --global --list credential.https://codeup.aliyun.com.providergeneric user.namebiejiahao user.emailxxxxxxxxqq.com3.Gi…...

hyperf websocket

composer require hyperf/websocket-server 配置 Server 修改 config/autoload/server.php&#xff0c;增加以下配置。 <?phpreturn [servers > [[name > ws,type > Server::SERVER_WEBSOCKET,host > 0.0.0.0,port > 9502,sock_type > SWOOLE_SOCK_TCP…...

用Echarts词云数据可视化热词表白​​

目录 1、使用前准备 2、准备工作 3、盒子搭建 4、整体展现 1、使用前准备 找到表白对象&#xff08;重中之重&#xff01;&#xff09;&#xff0c;不要一见钟情&#xff08;个人觉得&#xff1a;一见钟情属于见色起意&#xff01;&#xff09;&#xff0c;因为数据可视化需…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...