当前位置: 首页 > news >正文

HBase详解(2)

HBase

结构

HRegion

概述
  1. 在HBase中,会从行键方向上对表来进行切分,切分出来的每一个结构称之为是一个HRegion

  2. 切分之后,每一个HRegion会交给某一个HRegionServer来进行管理。HRegionServer是HBase的从节点,每一个HRegionServer可以管理多个HRegion

  3. 如果新建了一个表,那么这个表中只包含1个HRegion

  4. 在HBase中,因为行键是有序(字典序)的,所以切分出来的每一个HRegion之间的数据是不交叉的,因此HBase可以将接收到的不同的请求分发到不同的HRegionServer来进行处理,从而能够有效的避免请求集中到一个节点上

  5. 随着运行时间的推移,每一个HRegion中管理的数据都会越来越多,当HRegion管理的数据达到指定大小的时候,会进行分裂,分裂为两个HRegion

  6. 刚分裂完成之后,两个HRegion还暂时处于同一个HRegionServer上。但是HBase为了节点之间的负载均衡,可能会将其中一个HRegion转移给其他的HRegionServer来进行管理。注意:此时不会发生大量的数据迁移!HBase的数据是存储在HDFS上的,HRegion只是HBase提供的一个用于管理数据的结构!

  7. 每一个HRegion中,会包含至少1个HStore,可以包含多个HStore。HStore的数量是由列族的数量来决定 - 每一个列队都对应了一个HStore

  8. 每一个HStore中会包含1个memStore以及0到多个StoreFile/HFile

分裂策略
  1. 在HBase2.x中,支持7中分裂策略:ConstantSizeRegionSplitPolicyIncreasingToUpperBoundRegionSplitPolicyKeyPrefixRegionSplitPolicyDelimitedKeyPrefixRegionSplitPolicySteppingSplitPolicyBusyRegionSplitPolicyDisabledRegionSplitPolicy

  2. ConstantSizeRegionSplitPolicy:固定大小分裂,默认情况下,这个策略下,当HRegion的大小达到10G的时候,会均分为两个HRegion。可以通过属性hbase.hregion.max.filesize来调节,单位是字节,默认值是10737418240

  3. IncreasingToUpperBoundRegionSplitPolicy:HBase1.2及之前版本默认采用的就是这个策略。这个策略的特点:前几次分裂不是固定的数据,而是需要通过计算来获取

    1. 如果HRegion的数量超过了100,那么就按照hbase.hregion.max.filesize(默认值是10G)大小来分裂

    2. 如果HRegion的数量在1-100之间,那么按照min(hbase.hregion.max.filesize, regionCount^3 * initialSize)来计算,其中regionCount表示HRegion的个数,initialSize是HRegion的大小,initialSize的默认值是2 * hbase.hregion.memstreo.flush.size(默认值是134217728B)

    3. initialSize的值可以通过属性hbase.increasing.policy.initial.size来指定,单位是字节

  4. KeyPrefixRegionSplitPolicyIncreasingToUpperBoundRegionSplitPolicy的子类,在IncreasingToUpperBoundRegionSplitPolicy的基础上,添加了行键的判断,会将行键前缀相同(默认读取行键的前五个字节)的数据拆分到同一个HRegion中。这种分裂策略会导致拆分之后的两个HRegion之间不等大

  5. DelimitedKeyPrefixRegionSplitPolicy:例如当行键是video_001txt_001log_003等,此时希望行键是以_作为拆分单位,那么此时就需要使用DelimitedKeyPrefixRegionSplitPolicy

  6. SteppingSplitPolicy:HBase2.X默认使用的就是这个策略

    1. 如果这个表中只有1个HRegion,那么按照2 * hbase.hregion.memstreo.flush.size来进行分裂

    2. 如果这个表中HRegion的个数超过1个,那么按照hbase.hregion.max.filesize来进行分类

  7. BusyRegionSplitPolicy:这个策略只有在HBase2.x中可以使用,是IncreasingToUpperBoundRegionSplitPolicy的子类

    1. IncreasingToUpperBoundRegionSplitPolicy的基础上,添加了热点策略。热点指的是在一段时间内被频繁访问的数据。如果某一个写数据是热点数据,那么HRegion会将这些数据拆分到同一个HRegion中

    2. 判断一个HRegion是否是热点的HRegion,计算方式

      1. 判断条件:当前时间-上一次检测时间≥hbase.busy.policy.aggWindow,这样做的目的是为了控制后续计算的频率

      2. 计算请求的被阻塞率:aggBlockedRate = 一段时间内被阻塞的请求数 / 总的请求数量

      3. 判断条件:如果aggBlockedRate > hbase.busy.policy.blockedRequests,且该HRegion的繁忙时间 ≥ hbase.busy.policy.minAge,那么判定这个HRegion就是一个热点HRegion

    3. hbase.busy.policy.aggWindow的值默认是300000,单位是毫秒,即5min;hbase.busy.policy.blockedRequests的值默认是0.2fhbase.busy.policy.minAge的默认值是600000,单位是毫秒,即10min

    4. 默认情况下,每隔5min进行一次检测计算,如果该HRegion被频繁访问了10min,且该HRegion的阻塞率超过了20%,那么此时就认为这个HRegion是一个热点HRegion

  8. DisabledRegionSplitPolicy:禁用分裂策略,禁止HRegion的自动分裂。实际过程中较少使用,除非能够预估数据量

HBase的结构

Zookeeper的作用
  1. Zookeeper在HBase中充当了注册中心,即HBase集群中每一个节点启动之后,都会在Zookeeper来注册节点

  2. HBase集群启动之后,会在Zookeeper上来注册一个/hbase节点

  3. 当Active HMaster启动之后,会自动的在Zookeeper上注册一个临时节点/hbase/master

  4. 当Backup HMaster启动之后,会自动的在Zookeeper上的/hbase/backup-masters下来注册临时子节点。例如hadoop02上启动Backup HMaster,那么在Zookeeper上注册的节点/hbase/backup-masters/hadoop02,16000,1712459407965

  5. 当HRegionServer启动之后,会自动的在Zookeeper上的/hbase/rs下来注册临时子节点。例如hadoop01上启动HRegionServer,那么在Zookeeper上注册的节点/hbase/rs/hadoop01,16020,1712459960698

HMaster
  1. HBase是一个典型的主从结构,主节点是HMaster,从节点是HRegionServer。在HBase中,并不限制HMaster的个数,可以在任意一台安装了HBase的节点上来启动HMaster

    hbase-daemon.sh start master
  2. 因此HBase不限制HMaster的个数,所以理论上而言,HMaster不存在单点故障

  3. 当HBase集群中存在多个HMaster的时候,此时多个HMaster之间会存在ActiveBackup状态

  4. 为了保证数据的一致性,Active HMaster在接收到请求之后,会将信息同步给其他的Backup HMasters,同步的节点数量越多,效率会越低。也因此,虽然HBase中不限制HMaster的个数 ,但是实际过程中HMaster的数量一般不超过3个(1个Active HMaster + 2个Backup HMaster)

  5. Active HMaster会实时监控Zookeeper上/hbase/backup-masters下的子节点变化,以确定下一次需要将数据同步给哪些节点

  6. 当Zookeeper发现/hbase/master节点消失的时候,意味着Active HMaster宕机,那么此时Zookeeper会从/hbase/backup-masters的子节点中挑选一个切换为Active状态

  7. HMaster的作用

    1. 管理HRegionServer,但是不同于NameNode对于DataNode的掌控,HMaster主要是负责HRegion在HRegionServer之间的分布和转移,即HRegion交给HRegionServer来管理,由HMaster决定

    2. 记录和管理元数据。HBase中的元数据包含:namespace的信息,表信息,列族信息等。也因此,凡是产生元数据的操作(DDL,createdropalterlistenabledisable等)会经过HMaster,凡是不产生元数据的操作(DML,例如putappendgetscandeletedeleteall等)不会经过HMaster

HBase架构的读写流程
  1. 客户端先访问Zookeeper,从Zookeeper中获取hbase:meta文件的存储位置

  2. 客户端获取到hbase:meta文件的位置之后,访问HRegionServer,读取hbase:meta文件

  3. 客户端会从hbase:meta文件中获取到要操作的HRegion所在的位置

  4. 客户端获取到HRegion的位置之后,会访问对应的HRegionServer,来试着操作这个HRegion

  5. 注意:HBase为了提高访问效率,还大量的应用了缓存机制

    1. 在客户端第一次访问Zookeeper之后,会缓存hbase:meta文件的位置,那么后续这个客户端在发起请求的时候,就可以不用访问Zookeeper

    2. 客户端在获取到HRegion的位置之后,还会缓存这个HRegion的位置,那么后续如果操作的是同一个HRegion,还可以减少对元数据的读取

    3. 如果这个过程中,发生了内存崩溃或者HRegion的分裂或者转移,会导致缓存失效

HRegionServer
  1. HRegionServer是HBase的从节点,负责管理HRegion。根据官方文档给定,每一个HRegionServer大约可以管理1000个HRegion

  2. 每一个HRegionServer中包含1到多个WAL,1个BlockCache以及0到多个HRegion

  3. WAL(Write Ahead Log):发生在写操作之前的日志,在早期的版本中也称之为HLog

    1. WAL类似于HDFS中的edits文件。当HRegionServer接收到写操作之后,会先将这个命令记录到WAL中,然后再将数据更新到对应的HRegion的HStore的memStore中

    2. 在HBase0.94版本之前,WAL采用的是串行写机制。从HBase0.94开始,引入了NIO中的Channel,从而支持了并行写机制,因此能够提高WAL的写入效率,从而提升HBase的并发量

    3. 通过WAL机制,能够有效的保证数据不会产生丢失,因为WAL是落地到的磁盘上的,因此会一定程度上降低写入效率。实际过程中,如果能够接收一定程度的数据丢失,那么可以关闭WAL

    4. 当WAL写满之后,会产生一个新的WAL。单个WAL文件的大小由属性hbase.regionserver.hlog.blocksize * hbase.regionserver.logroll.multiplier来决定

      1. 早期的时候,hbase.regionserver.hlog.blocksize的值默认和HDFS的Block等大,从HBase2.5开始,hbase.regionserver.hlog.blocksize的值默认是HDFS Block的2倍大

      2. 早期的时候,hbase.regionserver.logroll.multiplier的,默认值是0.95,从HBase2.5开始,hbase.regionserver.logroll.multiplier的值是0.5

    5. 随着运行时间的推移,WAL的数量会越来越多,占用的磁盘会越来越多。因此,当WAL文件的个数超过指定数量的时候,按照时间顺序将产生的比较早的WAL清理掉。早期的时候,WAL的数量由hbase.regionserver.max.logs来决定,默认值是32;从HBase2.x开始,这个属性被废弃掉,固定值就是32

  4. BlockCache:数据块缓存

    1. 本质上就是一个读缓存,维系在内存中。早期的时候,BlockCache的大小是128M,从HBase2.x开始,是通过属性hfile.block.cache.size来调节,默认值是0.4,即最多占用服务器内存的40%

    2. 需要注意的是,如果hbase.regionserver.global.memstore.size + hfile.block.cache.size > 0.8,即这个HRegionServer上所有的memStore所占内存之和 + BlockCache占用的内存大小 > 服务器内存 * 0.8,那么HRegionServer就会报错

    3. 当从HRegionServer来读取数据的时候,数据会先缓存到BlockCache中,然后再返回给客户端;客户端下一次读取的时候,可以直接从BlockCache中获取数据

    4. BlockCache在进行缓存的时候,还会采用"局部性"原理。所谓的"局部性"原理本质上就是根据时间或者空间规律来提高猜测的命中率

      1. 时间局部性:当一条数据被读取之后,HRegionServer会认为这条数据被再次读取的概率要高于其他没有被读取过的数据,那么此时HRegionServer就会将这条数据放入BlockCache中

      2. 空间局部性:当一条数据被读取之后,HRegionServer会认为与这条数据相邻的数据被读取的概率要高于其他的数据,那么此时HRegionServer会将与这条数据相邻的数据也放入BlockCache中

    5. BlockCache还采用了LRU(Least Recently Used,最近最少使用)策略。除了LRUBlockCache以外,HBase还支持SlabBlockCache和BucketBlockCache

  5. HRegion:HBase中分布式存储和管理的基本单位

    1. 每一个HRegion中包含1个到多个HStore,HStore的数量由列族数量来决定

    2. 每一个HStore中会包含1个memStore以及0到多个HFile/StoreFile

    3. memStore本质上是一个写缓存

      1. HStore在接收到数据之后,会将数据临时存储到memStore中

      2. memStore是维系在内存中,由属性hbase.regionserver.memstore.flush.size来决定,默认值是134217728B

      3. 当达到一定条件的时候,HRegionServer会将memStore中的数据进行flush(冲刷)操作,每次冲刷都会产生一个新的HFile

      4. HFile最终会以Block形式落地到HDFS上

    4. memStore的flush条件

      1. 当某一个memStore被用满之后,这个memStore所在的HRegion中的所有的memStore都会进行冲刷

      2. 当HRegionServer上,所有memStore所占内存之和 ≥ java_heapsize * hbase.regionserver.global.memstore.size * hbase.regionserver.global.memstore.upperLimit,按照memStore的大小来依次冲刷,直到不满足上述条件为止。

        1. java_heapsize:java的堆内存大小

        2. hbase.regionserver.global.memstore.size:所有的memStore所能占用的内存比例,默认是0.4

        3. hbase.regionserver.global.memstore.upperLimit:上限,默认是0.95

        4. 假设服务器内存是128G,如果所有的memStore所占内存之和≥128G*0.4*0.95,将memStore从大到小依次冲刷,直到不满足条件为止

      3. 如果WAL的数量达到指定值,由于WAL会被清理掉,所以为了保证数据不丢失,那么会按照时间顺序,将memStore来依次冲刷

      4. 当距离上一次冲刷达到指定的时间间隔(可以通过属性hbase.regionserver.optionalflushinterval来指定,单位是毫秒,默认值是3600000)的时候,也会自动的触发memStore的冲刷

相关文章:

HBase详解(2)

HBase 结构 HRegion 概述 在HBase中,会从行键方向上对表来进行切分,切分出来的每一个结构称之为是一个HRegion 切分之后,每一个HRegion会交给某一个HRegionServer来进行管理。HRegionServer是HBase的从节点,每一个HRegionServ…...

Web后端搭建

目录 一 搭建服务器端 1.1安装服务器软件 1.2检查环境是否配置 1.3安装Tomcat 二 创建并发Web项目 2.1创建一个java项目 三 创建Servlet 前端程序如何才能访问到后端程序呢,这时候我们就需要web服务器来解决:将后端程序部署到服务器中&#xff0c…...

k8s单节点部署,容器运行时使用containerd

环境 系统 : entOS Linux release 7.9.2009 (CoreIP:192.168.44.177 硬件要求:控制平面最少需要 2c2g 安装前环境准备 如果是集群部署还需要配置时间同步 关闭防火墙 systemctl disable firewalld关闭selinux setenforce 0sed -i s/SELI…...

深入浅出 -- 系统架构之性能优化的核心思维

“在当前的互联网开发模式下,系统访问量日涨、并发暴增、线上瓶颈等各种性能问题纷涌而至,性能优化成为了现时代开发过程中炙手可热的名词,无论是在开发、面试过程中,性能优化都是一个常谈常新的话题”。Java语言作为企业应用中的…...

Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066

很奇怪的问题,在使用nifi的时候碰到的,这里是用NIFI,把数据从postgresql中同步到mysql中, 首先postgresql中的源表,中是没有create_time这个字段的,但是同步的过程中报错了. 报错的内容是说,目标表中有个create_time字段,这个字段是必填的,但是传过来的flowfile文件中,的数据没…...

批量删除文件脚本

在工作中我们经常会遇到一些重复性的工作,如批量创建文件,删除文件等等。这种重复性的工作shell脚本往往能给我们带来极大的便利。 将需要删除的文件路径存放在【stt_Files_240410.rpt】随便一个 文档中即可。 下面是一个批量删除文件的一个脚本范例&…...

蓝桥杯物联网竞赛_STM32L071KBU6_我的全部省赛及历年模拟赛源码

我写的省赛及历年模拟赛代码 链接:https://pan.baidu.com/s/1A0N_VUl2YfrTX96g3E8TfQ?pwd9k6o 提取码:9k6o...

微服务和K8S

微服务和Kubernetes(通常简称为K8s)都是现代软件开发和部署中常用的概念和工具。它们有着各自独特的特点和作用: 1. **微服务**: - **定义**:微服务是一种架构设计风格,将应用程序拆分为一组小型、独立…...

Ant Design 表单基础用法综合示例

Ant Design 的表单组件设计得非常出色,极大地简化了表单开发的复杂度,让开发者能够快速构建出功能丰富、交互友好的表单界面。 接下来总结一下 Ant Design 中表单的基本用法。 Form 组件 用于定义整个表单,可以设置表单的布局方式、提交行为等。通常会将表单字段组件嵌套在 F…...

MWeb Pro For Mac v4.5.9 强大的 Markdown 软件中文版

MWeb 是专业的 Markdown 写作、记笔记、静态博客生成软件,目前已支持 Mac,iPad 和 iPhone。MWeb 有以下特色: 软件下载:MWeb Pro For Mac v4.5.9 软件本身: 使用原生的 macOS 技术打造,追求与系统的完美结合…...

Git常用命令详解:掌握版本控制的核心操作

Git作为世界上最流行的分布式版本控制系统,以其强大的分支管理、高效的协同工作能力和完善的版本追溯功能,深受广大开发者喜爱。熟练掌握Git的常用命令是每一位程序员必备的技能。本文将深入解析Git中那些最为基础且实用的命令,助您在日常开发…...

Vue链接跳转地址 href 中有参数带有#

Vue链接跳转地址 href 中有参数带有# A跳转B 带参数backURL 转码一次会被浏览器解码 xxxx?backurlencodeURIComponent(url) 到B页面拿到的query 值取不到 需要对地址转码两次才能取值成功 xxxx?backurlencodeURIComponent(encodeURIComponent(url))...

python 会员信息管理系统2.0

问题介绍 综合案例实现:会员管理系统设计与实现-V3 利用所学习的知识点 ,结合会员管理系统的分析与实现, 了解面向对象开发过程中类内部功能的分析方法,系统讲解 Python语法、控制结构、四种典型序列 ,函数定义以及面向对象语法和模块的应用…...

HTTP的强制缓存和协商缓存

HTTP的强制缓存和协商缓存 HTTP的缓存技术强制缓存ExpiresCache-Control 协商缓存If-Modified-Since和Last-ModifiedIf-None-Match和ETag优先级 可被缓存的请求方法总结 HTTP的缓存技术 当我们进行HTTP请求时,需要将请求报文发送给对端,当服务端收到请求…...

Prometheus-Grafana基础篇安装绘图

首先Prometheus安装 1、下载 https://prometheus.io/download/ 官网路径可以去这儿下载 2、如图: 3.解压: tar -xf prometheus-2.6.1.linux-amd64 cd prometheus-2.6.1.linux-amd64 4.配置文件说明: vim prometheus.yml 5.启动Promethe…...

探索艺术的新领域——3D线上艺术馆如何改变艺术作品的传播方式

在数字化时代的浪潮下,3D线上艺术馆成为艺术家们展示和传播自己作品的新平台。不仅突破了地域和物理空间的限制,还提供了全新的互动体验。 一、无界限的展示空间:艺术家的新展示平台 3D线上艺术馆通过数字化技术,为艺术家提供了一…...

[dvwa] file upload

file upload 0x01 low 直接上传.php 内容写<? eval($_POST[jj]);?> 用antsword连 路径跳两层 0x02 medium 添加了两种验证&#xff0c;格式为图片&#xff0c;大小限制小于1000 上传 POST /learndvwa/vulnerabilities/upload/ HTTP/1.1 Host: dvt.dv Content-Le…...

pygame发射子弹后绘制射线

import pygame import sys import mathpygame.init()screen pygame.display.set_mode((800, 600)) pygame.display.set_caption("Rotate and Shoot Bullets")# 定义子弹类 class Bullet:def __init__(self, x, y, angle):self.x xself.y yself.angle angleself.s…...

逻辑回归都有什么类型

逻辑回归是一种用于解决分类问题的统计学习方法&#xff0c;它基于概率理论&#xff0c;将输入特征与输出类别之间的关系建模为一个概率分布。逻辑回归模型可以用不同的方法来表示&#xff0c;其中包括&#xff1a; 1. **基本逻辑回归模型**&#xff1a;最简单的逻辑回归模型假…...

基于springboot+vue实现的高校宿舍管理系统(界面优美,十分推荐)

一、项目简介 本项目是一套基于springbootvue实现的高校宿舍管理系统设计与实现 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...