Python实现BOA蝴蝶优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
1.项目背景
蝴蝶优化算法(butterfly optimization algorithm, BOA)是Arora 等人于2019年提出的一种元启发式智能算法。该算法受到了蝴蝶觅食和交配行为的启发,蝴蝶接收/感知并分析空气中的气味,以确定食物来源/交配伙伴的潜在方向。
蝴蝶利用它们的嗅觉、视觉、味觉、触觉和听觉来寻找食物和伴侣,这些感觉也有助于它们从一个地方迁徙到另一个地方,逃离捕食者并在合适的地方产卵。在所有感觉中,嗅觉是最重要的,它帮助蝴蝶寻找食物(通常是花蜜)。蝴蝶的嗅觉感受器分散在蝴蝶的身体部位,如触角、腿、触须等。这些感受器实际上是蝴蝶体表的神经细胞,被称为化学感受器。它引导蝴蝶寻找最佳的交配对象,以延续强大的遗传基因。雄性蝴蝶能够通过信息素识别雌性蝴蝶,信息素是雌性蝴蝶发出的气味分泌物,会引起特定的反应。
通过观察,发现蝴蝶对这些来源的位置有非常准确的判断。此外,它们可以辨识出不同的香味,并感知它们的强度。蝴蝶会产生与其适应度相关的某种强度的香味,即当蝴蝶从一个位置移动到另一个位置时,它的适应度会相应地变化。当蝴蝶感觉到另一只蝴蝶在这个区域散发出更多的香味时,就会去靠近,这个阶段被称为全局搜索。另外一种情况,当蝴蝶不能感知大于它自己的香味时,它会随机移动,这个阶段称为局部搜索。
本项目通过BOA蝴蝶优化算法优化BP神经网络回归模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
3.3数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量分布直方图
用Matplotlib工具的hist()方法绘制直方图:
4.2 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
6.构建BOA蝴蝶优化算法优化BP神经网络回归模型
主要使用BOA蝴蝶优化算法优化BP神经网络回归模型算法,用于目标回归。
6.1 BOA蝴蝶优化算法寻找最优参数值
最优参数:
6.2 最优参数值构建模型
编号 | 模型名称 | 参数 |
1 | BP神经网络回归模型 | units=best_units |
2 | epochs=best_epochs |
6.3 最优参数模型摘要信息
6.4 最优参数模型网络结构
6.5 最优参数模型训练集测试集损失曲线图
7.模型评估
7.1评估指标及结果
评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
BP神经网络回归模型 | R方 | 0.9987 |
均方误差 | 25.1294 | |
解释方差分 | 0.9987 | |
绝对误差 | 3.9032 |
从上表可以看出,R方分值为0.9987,说明模型效果比较好。
关键代码如下:
7.2 真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致,模型效果良好。
8.结论与展望
综上所述,本文采用了BOA蝴蝶优化算法寻找BP神经网络回归模型算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 获取方式一:# 项目实战合集导航:https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2# 获取方式二:链接:https://pan.baidu.com/s/1Zs_E_SGw_vOeqg7jcskPdg
提取码:s427
相关文章:

Python实现BOA蝴蝶优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 蝴蝶优化算法(butterfly optimization algorithm, BOA)是Arora 等人于2019年提出的一种元启发式智能算…...

3D Web轻量化引擎HOOPS Commuicator如何从整体装配中创建破碎的装配零件和XML?
前言 虽然可以从某些本机CAD格式(其子组件驻留在单独的文件中,例如CATIA V5、Creo - Pro/E、NX或SolidWorks)创建破碎装配,但无法从整体装配文件(例如IFC、Revit)创建或3DXML。 本文介绍了一个示例&#…...

关于运行阿里云直播Demo pub get 报的错
flutter --version dart --version 如何使用Flutter框架推流_音视频终端 SDK(Apsara Video SDK)-阿里云帮助中心 终端输入 dart pub --trace get --no-precompile 打印详细报错信息 详细咨询chatgpt pub.dev 中已经是最新版本了 项目中已经是最新版本了 最终定位到 终端…...

C语言调用Python
目录 1.直接调用python语句 头文件引用 2.调用无参有参函数 1、调用无参函数 1.建立nopara.py文件 2.使用c语言根据上面流程进行调用 2、调用有参函数 1.建立nopara.py文件 2.使用c语言根据上面流程进行调用 C语言调用python需要我们已经安装好了libpython3的 dev依赖…...
SVN客户端异常问题处理
1、如遇svn服务端异常(所有用户登录不上) (1)登录192.168.**.**服务器,找到E:\仓库所在盘\VisualSVN-GlobalWinAuthz.ini (2)先备份VisualSVN-GlobalWinAuthz.ini文件 (3…...
gin+sse实现离散的消息通知
虽然网上的都是用sse实现将实时消息流不间断的推给前端,但是sse也可以模拟websocket进行突发的消息通知,而不是一直读取数据并返回数据。即服务端保存所有的连接对象,前端管理界面发送正常的http请求,在后端遍历所有的连接对象&am…...

C++ //练习 11.38 用unordered_map重写单词计数程序(参见11.1节,第375页)和单词转换程序(参见11.3.6节,第391页)。
C Primer(第5版) 练习 11.38 练习 11.38 用unordered_map重写单词计数程序(参见11.1节,第375页)和单词转换程序(参见11.3.6节,第391页)。 环境:Linux Ubuntu࿰…...

【示例】MySQL-4类SQL语言-DDL-DML-DQL-DCL
前言 本文主要讲述MySQL中4中SQL语言的使用及各自特点。 SQL语言总共分四类:DDL、DML、DQL、DCL。 SQL-DDL | Data Definition Language 数据定义语言:用来定义/更改数据库对象(数据库、表、字段) 用途 | 操作数据库 # 查询所…...

基于SpringBoot+Vue的果蔬种植销售一体化服务平台(源码+文档+部署+讲解)
一.系统概述 伴随着我国社会的发展,人民生活质量日益提高。于是对果蔬种植销售一体化服务管理进行规范而严格是十分有必要的,所以许许多多的信息管理系统应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套果蔬种植销售一体…...
数据结构面试
当然可以!以下是数据结构面试问题及答案整理: **什么是数据结构?** 答:数据结构是指组织和存储数据的方式,它允许高效地访问和操作数据。不同的数据结构有不同的优势和适用场景。常见的基本数据结构包括数组、链表、…...
Linux 上安装 SQLite
SQLite Download Page 从上面的链接中源代码区下载 sqlite-autoconf-*.tar.gz。 历史版本见下连接: https://sqlite.org/chronology.html...

C++模板初阶(个人笔记)
模板初阶 1.泛型编程2.函数模板2.1函数模板的实例化2.2模板参数的匹配规则 3.类模板3.1类模板的实例化 1.泛型编程 泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。 //函数重载 //交换函数的逻辑是一致的,…...

如何用Java后端处理JS.XHR请求
Touching searching engine destroies dream to utilize php in tomcat vector.The brave isn’t knocked down,turn its path to java back-end. Java Servlet Bible schematic of interaction between JS front-end and Java back-end Question 如何利用Java…...

分布式锁-redission
5、分布式锁-redission 5.1 分布式锁-redission功能介绍 基于setnx实现的分布式锁存在下面的问题: 重入问题:重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中,可重入锁的意义在于防止死锁,比如HashTable这样的代码…...
C/C++ 自定义头文件,及头文件结构详解
头文件 在之前介绍的大部分C语言语法基础的章节中列举的实例代码部分,都会在源文件的开始的第一行通过#include预处理指令包含进"stdio.h",后面这个".h"后缀名的就是头文件了。而什么是头文件呢? 通俗方式理解头文件 …...

快速列表quicklist
目录 为什么使用快速列表quicklist 对比双向链表 对比压缩列表ziplist quicklist结构 节点结构quicklistNode quicklist 管理ziplist信息的结构quicklistEntry 迭代器结构quicklistIter quicklist的API 1.创建快速列表 2.创建快速列表节点 3.头插quicklistPushHead …...

《MATLAB科研绘图与学术图表绘制从入门到精通》
解锁MATLAB科研绘图魅力,让数据可视化成为你的科研利器! 1.零基础快速入门:软件操作实战案例图文、代码结合讲解,从入门到精通快速高效。 2.多种科研绘图方法:科研绘图基础变量图形极坐标图形3D图形地理信息可视化等&a…...
Day3-struct类型、列转行、行转列、函数
Hive 数据类型 struct类型 struct:结构体,对应了Java中的对象,实际上是将数据以json形式来进行存储和处理 案例 原始数据 a tom,19,male amy,18,female b bob,18,male john,18,male c lucy,19,female lily,19,female d henry,18,male davi…...

C++设计模式:构建器模式(九)
1、定义与动机 定义:将一个复杂对象的构建与其表示相分离,使得同样的构建过程(稳定)可以创建不同的表示(变化) 动机: 在软件系统中,有时候面临着“一个复杂对象”的创建工作&#x…...

OJ 【难度1】【Python】完美字符串 扫雷 A-B数对 赛前准备 【C】精密计时
完美字符串 题目描述 你可能见过下面这一句英文: "The quick brown fox jumps over the lazy dog." 短短的一句话就包含了所有 2626 个英文字母!因此这句话广泛地用于字体效果的展示。更短的还有: "The five boxing wizards…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...

五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
Java多线程实现之Runnable接口深度解析
Java多线程实现之Runnable接口深度解析 一、Runnable接口概述1.1 接口定义1.2 与Thread类的关系1.3 使用Runnable接口的优势 二、Runnable接口的基本实现方式2.1 传统方式实现Runnable接口2.2 使用匿名内部类实现Runnable接口2.3 使用Lambda表达式实现Runnable接口 三、Runnabl…...