当前位置: 首页 > news >正文

如何从应用商店Microsoft Store免费下载安装HEVC视频扩展插件

在电脑上打开一张HEIC类型的图片提示缺少HEVC解码器,无法打开查看,现象如下:
在这里插入图片描述
这种情况一般会提示我们需要下载安装HEVC解码器,点击“立即下载并安装”会跳转到应用商店,但是我们发现需要付费7元才能下载安装
在这里插入图片描述
免费安装的方法:

  • 1、浏览器打开以下链接,点击页面上的安装按钮,会跳转到应用商店,此时我们可以看到在商店的顶端提示“此应用在你的设备上将无法工作”,不用管这个提示。
    https://apps.microsoft.com/detail/9N4WGH0Z6VHQ?hl=zh-cn&gl=cn
    在这里插入图片描述

  • 2、复制并在浏览器中打开以下链接
    https://store.rg-adguard.net/
    在这里插入图片描述

  • 3、回到刚刚打开的应用商店,点击分享按钮,复制链接
    在这里插入图片描述

  • 4、将复制到的链接填写到刚才打开的网站的输入框内,点击前往,点击结果中的第二个下载安装包
    在这里插入图片描述
    在这里插入图片描述

  • 5、安装刚才下载到的安装包
    在这里插入图片描述

  • 6、再次打开heic格式的图片,已经可以正常显示了
    在这里插入图片描述

相关文章:

如何从应用商店Microsoft Store免费下载安装HEVC视频扩展插件

在电脑上打开一张HEIC类型的图片提示缺少HEVC解码器,无法打开查看,现象如下: 这种情况一般会提示我们需要下载安装HEVC解码器,点击“立即下载并安装”会跳转到应用商店,但是我们发现需要付费7元才能下载安装 免费安装…...

【vue】v-if 条件渲染

v-if 不适用于频繁切换显示模式的场景 修改web.user&#xff0c;可看到条件渲染的效果 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initi…...

Day37:LeedCode 738.单调递增的数字 968.监控二叉树 蓝桥杯 翻转

738. 单调递增的数字 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数字呈 单调递增 。 示例 1: 输入: n 10 输出: 9 思路: 假设这个数是98,…...

详解Qt元对象系统

Qt库作为一款流行的跨平台C应用程序开发框架&#xff0c;其中的元对象系统是其核心特性之一。Qt元对象系统不仅提供了诸如信号槽&#xff08;Signals & Slots&#xff09;、属性系统&#xff08;Property System&#xff09;等功能&#xff0c;还实现了对C对象的运行时类型…...

无法用raven-js,如何直接使用TraceKit标准化错误字符串(一次有趣的探索)

引子&#xff1a;网上三年前&#xff08;2020&#xff09;的文章介绍了一个raven-js 简单说就是把堆栈信息格式化兼容各浏览器&#xff0c;便于查看错误来源。 **but&#xff1a;**到处找了一下raven-js&#xff0c;已经没有官方出处了&#xff0c;只在Sentry的源码仓库里发现…...

Docker学习笔记(二):在Linux中部署Docker(Centos7下安装docker、环境配置,以及镜像简单使用)

一、前言 记录时间 [2024-4-6] 前置文章&#xff1a;Docker学习笔记&#xff08;一&#xff09;&#xff1a;入门篇&#xff0c;Docker概述、基本组成等&#xff0c;对Docker有一个初步的认识 在上文中&#xff0c;笔者进行了Docker概述&#xff0c;介绍其历史、优势、作用&am…...

uniapp 检查更新

概览 在uniapp中检查并更新应用&#xff0c;可以使用uni-app自带的更新机制。以下是一个简单的示例代码&#xff0c;用于在应用启动时检查更新&#xff1a; // 在App.vue或者其他合适的地方调用 onLaunch: function() {// 当uni-app初始化完成时执行// 判断平台const platfor…...

(Java)数据结构——正则表达式

前言 本博客是博主用于复习数据结构以及算法的博客&#xff0c;如果疏忽出现错误&#xff0c;还望各位指正。 正则表达式概念 正则表达式&#xff0c;又称规则表达式&#xff08;Regular Expression&#xff09;&#xff0c;是一种文本模式&#xff0c;包括普通字符&#xf…...

第6章 6.3.1 正则表达式的语法(MATLAB入门课程)

讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 正则表达式可以由一般的字符、转义字符、元字符、限定符等元素组…...

RX8130CE为用户提供带复位延迟和主备电管理的解决方案

实时时钟作为设备的精确时钟来源&#xff0c;其作用如同人的心脏&#xff0c;为设备提供准确稳定的心跳.而便携式设备由于应用场景多变&#xff0c;所以对内部元器件要求也相对较高&#xff0c;这就对作为核心器件的实时时钟模块提出不少挑战。EPSON实时钟模块产品线拥有丰富的…...

JS文件导出变量

如果 config.js 文件中有多个变量要导出&#xff0c;你可以按照以下步骤进行&#xff1a; 1. 在 config.js 文件中定义多个变量&#xff0c;并使用 export 导出它们。 // config.js const baseUrl "http://localhost:8081"; const apiKey "your_api_key&quo…...

已知私钥和密文,如何用python进行RSA解密

要使用Python进行RSA解密,你可以使用pycryptodome库。下面是一个简单的示例,展示了如何使用已知的私钥和密文进行RSA解密: 首先,确保你已经安装了pycryptodome库。如果没有安装,你可以通过运行pip install pycryptodome来安装它。 然后,你可以使用以下代码进行RSA解密:…...

vue2-vue3面试

v-text/v-html/v-once/v-show/v-if/v-for/v-bind/v-on beforeCreate() 已有DOM节点&#xff1a;可以data选项&#xff1a;不可以虚拟DOM节点&#xff1a;不可以 created():掌握 已有DOM节点&#xff1a;可以data选项&#xff1a;可以虚拟DOM节点&#xff1a;不可以 beforeMount…...

jmeter生成随机数的详细步骤及使用方式

Apache JMeter 是一个用于测试性能的开源工具&#xff0c;它可以模拟多种类型的负载并测量应用程序的性能。在 JMeter 中生成随机数可以通过使用预定义的函数来实现。以下是生成随机数的详细步骤及使用方式&#xff1a; 安装 JMeter&#xff1a; 首先&#xff0c;你需要在你的计…...

速盾:为什么会出现高防cdn?它适合哪些行业?

随着互联网的不断发展和普及&#xff0c;网络安全问题也变得日益突出。由于互联网的特性&#xff0c;许多企业和组织的在线业务往往面临来自网络攻击的威胁&#xff0c;如DDoS攻击、恶意爬虫等。为了保护在线业务的正常运行和用户数据的安全&#xff0c;高防CDN应运而生。 高防…...

GB∕T 25058-2019 信息安全技术 网络安全等级保护实施指南

GB∕T 25058-2019 信息安全技术 网络安全等级保护实施指南...

使用Nodejs + express连接数据库mongoose

文章目录 先创建一个js文档安装 MongoDB 驱动程序&#xff1a;引入 MongoDB 模块&#xff1a;设置数据库连接&#xff1a;新建一个表试试执行数据库操作&#xff1a;关闭数据库连接&#xff1a; 前面需要准备的内容可看前面的文章&#xff1a; Express框架搭建项目 node.js 简单…...

朗致集团面试-Java架构师

总结 三轮面试&#xff0c;第一轮是逻辑测试性格测试&#xff0c;第二轮是技术面试&#xff08;面试官-刘老师&#xff09;&#xff0c;第三轮是CTO面试&#xff08;面试官-屠老师&#xff09;。如果第三轮面试通过&#xff0c;考官会问你薪资意向&#xff0c;如果满意的话HR就…...

Ubuntu 23.10 搜狗拼音输入法闪屏解决

问题与解决 Ubuntu 23.10下安装搜狗拼音输入法并且使用搜狗输入法时&#xff0c;会闪屏。站内有人说可以换使用Xorg作为桌面服务&#xff0c;然后使用基于X11的桌面&#xff0c;其实可以不用那么麻烦&#xff0c;只需要设置QT的环境变量QT_QPA_PLATFORMxcb&#xff0c;然后重新…...

备战蓝桥杯---刷杂题2

显然我们直接看前一半&#xff0c;然后我们按照斜行看&#xff0c;我们发现斜行是递增的&#xff0c;而同一行从左向右也是递增的&#xff0c;因此我们可以直接二分&#xff0c;同时我们发现对称轴的数为Ck,2k. 我们从16斜行枚举即可 #include<bits/stdc.h> using name…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...