LangChain入门:14.LLMChain:最简单的链的使用
摘要
本文将介绍LangChain库中LLMChain工具的使用方法。LLMChain将提示模板、语言模型(LLM)和输出解析器整合在一起,形成一个连贯的处理链,简化了与语言模型的交互过程。我们将探讨LLMChain的技术特点、应用场景以及它解决的问题,并提供详细的代码示例。
技术介绍
LLMChain是LangChain库中的一项功能强大的工具,它提供了一个便捷的方式来与语言模型进行交互。通过LLMChain,用户可以轻松地构建提示模板、调用语言模型进行推理,并解析输出结果,而无需手动处理繁琐的过程。
应用场景
LLMChain适用于许多自然语言处理任务,包括文本生成、情感分析、文本分类等。它可以用于构建智能对话系统、自动文本摘要生成器、情感识别引擎等应用程序。此外,LLMChain还可以用于快速原型开发和实验,以及用于教育和研究目的。
解决的问题
LLMChain解决了与语言模型交互过程中的诸多问题,包括:
- 简化交互流程:通过整合提示模板、语言模型和输出解析器,LLMChain简化了与语言模型的交互过程,使用户可以更轻松地使用语言模型进行推理。
- 自动化处理:LLMChain提供了多种调用方法,可以根据需求自动处理输入数据和解析输出结果,减少了用户的手动干预。
- 提高效率:LLMChain的灵活性和高效性使其成为处理自然语言处理任务的理想工具,可以大大提高工作效率和准确性。
完整示例代码
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from langchain.chains import LLMChain# 导入所需库和模块
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from langchain.chains import LLMChain# 使用Pydantic创建数据格式
from pydantic import BaseModel, Field
from typing import Listclass Flower(BaseModel):name: str = Field(description="name of a flower")colors: List[str] = Field(description="the colors of this flower")# 创建提示模板实例
template = "{flower}的花语是?"
llm = ChatOpenAI(openai_api_key='# 替换为你的API密钥',base_url='https://api.chatanywhere.tech/v1',model='gpt-3.5-turbo',temperature=0,
)
prompt = PromptTemplate.from_template(template)# 初始化LLMChain
llm_chain = LLMChain(llm=llm,prompt=prompt
)# 调用LLMChain并获取结果
result = llm_chain.invoke("玫瑰")
print(result)
多种调用方法
-
通过
run
方法:input_list = [{ 'flower': "玫瑰", 'season': "夏季" },{ 'flower': "康乃馨", 'season': "冬季" },{ 'flower': "郁金香", 'season': "春季" }, ] print(llm_chain.run(input_list))
-
通过
predict
方法:print(llm_chain.predict(flower="玫瑰", season="夏季"))
-
通过
apply
方法:input_list = [{ 'flower': "玫瑰", 'season': "夏季" },{ 'flower': "康乃馨", 'season': "冬季" },{ 'flower': "郁金香", 'season': "春季" }, ] print(llm_chain.apply(input_list))
-
通过
generate
方法:input_list = [{ 'flower': "玫瑰", 'season': "夏季" },{ 'flower': "康乃馨", 'season': "冬季" },{ 'flower': "郁金香", 'season': "春季" }, ] print(llm_chain.generate(input_list))
以上示例展示了LLMChain的多种调用方法,以适应不同的使用场景。
不同的执行结果
相关文章:

LangChain入门:14.LLMChain:最简单的链的使用
摘要 本文将介绍LangChain库中LLMChain工具的使用方法。LLMChain将提示模板、语言模型(LLM)和输出解析器整合在一起,形成一个连贯的处理链,简化了与语言模型的交互过程。我们将探讨LLMChain的技术特点、应用场景以及它解决的问题…...

深入理解k8s kube-proxy
1、概述 我觉得只要大家知道kube-proxy是用来配置网络规则的而不是转发流量的,真正的流量由iptables/ipvs来转发就可以了。 网络是k8s的一个关键部分。理解k8s中网络组件如何工作可以帮助更好的设计和配置我们的应用。 kube-proxy就是K8s网络的核心组件。它把我们…...

Spark-机器学习(1)什么是机器学习与MLlib算法库的认识
从这一系列开始,我会带着大家一起了解我们的机器学习,了解我们spark机器学习中的MLIib算法库,知道它大概的模型,熟悉并认识它。同时,本篇文章为个人spark免费专栏的系列文章,有兴趣的可以收藏关注一下&…...
java的正则表达式校验,包含了中国几乎所有运营商手机号码的校验格式
时间2024年4月14日22:25:00 代码 String PHONE_REGEX "^1([38][0-9]|4[579]|5[0-3,5-9]|6[6]|7[0135678]|9[89])\\d{8}$";解释 这个Java代码段定义了一个常量 PHONE_REGEX,它包含了一个正则表达式,用于匹配中国大陆的手机号码。下面是对这…...

C#简单工厂模式的实现
using System.Diagnostics.Metrics; using System.Runtime.InteropServices; using static 手写工厂模式.Program;namespace 手写工厂模式 {internal class Program{public interface eats {void eat();}//定义了一个接口public class rice : eats{public void eat() {Console.…...
.NET 设计模式—观察者模式(Observer Pattern)
简介 在.NET中,观察者模式是一种设计模式,它允许对象之间进行一对多的依赖关系。当一个对象的状态发生变化时,所有依赖于它的对象都会收到通知并自动更新。这种模式在事件驱动的设计中非常常见。 在.NET中实现观察者模式,通常涉…...

EasyUI Jquery 学习笔记 ——DataGrid(数据网格)与 Tree(树)详细版
1. DataGrid(数据网格)与 Tree(树) 1.1 Datagrid 数据网格 扩展自 $.fn.panel.defaults。通过 $.fn.datagrid.defaults 重写默认的 defaults。 数据网格(datagrid)以表格格式显示数据,并为选择、排序、分组和编辑数据提供了丰富的支持。数据网格(datagrid)的设计目…...
JAVA发票验真接口、票据ocr、数电票在线查验真伪
发票验真接口,,实时联网核验发票真伪,查验一致返回全票面信息,支持查验增值税发票管理系统开具的发票,支持批量核验发票,翔云发票查验送发票识别,助您摆脱手动输入繁琐,提升工作效率。 发票查验接口适用于银行、金融、代理记账等发票管理数量…...
el-date-picker调用回车事件
elementui的el-date-picker想要调用回车事件: <el-date-pickerv-model"state.date"type"date"value-format"YYYY-MM-DD HH:mm:ss"placeholder"选择日期"clearablekeydown.enter"handleDown"></el-date-…...

js学习总结
这里写目录标题 前情提要JavaScript书写位置1. 内部javaScript (不常用)2. 外部javaScript (常用)3.内联javaScript (常用) js中的输入和输出输出语法1. document.write()2. alert()3. console.log() 输入语法prompt() 前情提要 1. 在javaScript中的 分号 是可以省略的JavaScr…...

MES实施优势有哪些?MES制造执行系统的主要内容
各个行业之间也开始进入到了激烈的竞争当中,很多企业为了能够有效提升企业竞争力,都会通过提升自身实力的方式来提升竞争力。一些制造业也会在经营过程当中使用到MES系统,那么,mes系统的优势有哪些呢? 1、优化企业现场…...

ChatGPT 和 Elasticsearch:使用 Elastic 数据创建自定义 GPT
作者:Sandra Gonzales ChatGPT Plus 订阅者现在有机会创建他们自己的定制版 ChatGPT,称为 GPT,这替代了之前博客文章中讨论的插件。基于本系列的第一部分的基础 —— 我们深入探讨了在 Elastic Cloud 中设置 Elasticsearch 数据和创建向量嵌…...

废品回收 小程序+APP
用户实名认证、回收员实名认证、后台审核、会员管理、回收员管理、订单管理、提现管理、地图、档案管理。 支持,安卓APP、苹果APP、小程序 流程: 一、用户端下单,地图选择上门位置、填写具体位置、废品名称、预估重量、选择是企业废旧、家…...

下载好了annaconda,但是在创建一个新的Conda虚拟环境报错
文章目录 问题描述:解决方案1.生成一个配置文件 问题总结 问题描述: ProxyError(MaxRetryError(“HTTPSConnectionPool(host‘repo.anaconda.com’, port443): Max retries exceeded with url: /pkgs/pro/win-64/repodata.json.bz2 (Caused by ProxyErr…...

如何安装MacOS的虚拟机?mac安装虚拟机的步骤 虚拟机安装MacOS VMware Fusion和Parallels Desktop19
要在Mac上运行MacOS的虚拟机,常用的方法是使用虚拟化软件如VMware Fusion或Parallels Desktop。 以下是安装MacOS的虚拟机的主要步骤: 1. 检查系统要求:确定您的Mac硬件和操作系统满足安装要求。您需要一台具备足够性能的Mac,并…...
Flutter 中 AutomaticKeepAliveClientMixin 的介绍及使用
在 Flutter 中,当你在一个页面中滑动列表或者进行其他一些操作时,如果你返回到该页面,可能会发现之前的状态已经丢失了。这在某些情况下可能是不可取的,特别是当你想要保留之前的状态,而不是每次都重新加载页面时。 为…...

注意力机制篇 | YOLOv8改进之清华开源ACmix:自注意力和CNN的融合 | 性能速度全面提升
前言:Hello大家好,我是小哥谈。混合模型ACmix将自注意力机制和卷积神经网络进行整合,使其同时具有自注意力机制和卷积神经网络的优点。这是清华大学、华为和北京人工智能研究院共同发布在2022年CVPR中的论文。ACmix结合了自注意力机制和卷积神经网络的优势,以提高模型的性能…...
Go语言支持重载吗?如何实现重写?
Go语言不支持传统意义上的函数和方法重载。在Go语言中,函数名或方法名不能相同但参数列表不同,因为这会导致编译错误。 然而,可以通过方法重写(override)来实现类似的功能。方法重写是指在子类中定义一个与父类同名的…...
Spring中基于事件监听驱动 和 线程池的异步任务
文章目录 事件监听驱动 与 异步事件源ApplicationContextAware接口 发布事件事件实体监听事件实现异步注入綫程池 事件驱动机制,与MQ消息队列比较 事件监听驱动 与 异步 事件监听驱动优点:解耦,将 事件和业务进行解耦,通过Asyc注解…...

C++ 优先级队列用法详解与模拟实现
文章目录 C 优先级队列用法与模拟实现介绍用法头文件1.创建优先级队列priority_queue 2. 插入元素push 3. 删除元素pop 访问顶部元素top 检查优先级队列的大小size 检查优先级队列是否为空empty 模拟实现 C 优先级队列用法与模拟实现 介绍 优先级队列(Priority Qu…...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...