当前位置: 首页 > news >正文

【stata】求滚动波动情况

0.计算对象

计算 t t t t + 1 t+1 t+1 t + 2 t+2 t+2 这三起滚动波动情况
V o l i , t = l n ( ∑ n = t n = t + 2 ( g n − g ˉ ) 2 3 ) Vol_{i,t} = ln(\sqrt{\frac{\sum_{n=t}^{n=t+2}(g_{n}-\bar{g})^2}{3}}) Voli,t=ln(3n=tn=t+2(gngˉ)2 )

e . g e.g e.g: 假设 2008-2010的value分别为【6.264004 】、 【11.11958】 、 【18.7657】
三年均值 g ˉ \bar{g} gˉ等于【12.049761】

此处数据与stata模拟数据一致,便于对比手动计算结果代码计算结果是否一致,
进而证明代码的有效性。

. di (6.264004  + 11.11958 + 18.7657) / 3
12.049761

V o l i , 2008 = l n ( ∑ n = 2008 n = 2010 ( g n − g ˉ ) 2 3 ) Vol_{i,2008} = ln(\sqrt{\frac{\sum_{n=2008}^{n=2010}(g_{n}-\bar{g})^2}{3}}) Voli,2008=ln(3n=2008n=2010(gngˉ)2 )
V o l i , 2008 = l n ( ( 6.26 − 12.05 ) 2 + ( 11.12 − 12.05 ) 2 + ( 18.77 − 12.05 ) 2 3 ) Vol_{i,2008} = ln(\sqrt{\frac{(6.26-12.05)^2 + (11.12-12.05)^2 + (18.77-12.05)^2 }{3}}) Voli,2008=ln(3(6.2612.05)2+(11.1212.05)2+(18.7712.05)2 )
V o l i , 2008 = l n ( 79.5474 3 ) Vol_{i,2008} = ln(\sqrt{\frac{79.5474 }{3}}) Voli,2008=ln(379.5474 )
V o l i , 2008 = l n ( 26.5158 ) Vol_{i,2008} = ln(\sqrt{26.5158}) Voli,2008=ln(26.5158 )
V o l i , 2008 = l n ( 5.1493495 ) Vol_{i,2008} = ln(5.1493495) Voli,2008=ln(5.1493495)
V o l i , 2008 = 1.63 Vol_{i,2008} = 1.63 Voli,2008=1.63

1.模拟数据

clear
set seed 123
set obs 10// ssc install egenmore,replace
egen id = repeat(),v(1/2)
sort id 
egen year = repeat(),v(2008/2012)
gen value = uniform() * 20
replace year = year - 1 if id == 2list id year value

运行结果

Number of observations (_N) was 0, now 10.(5 real changes made)+----------------------+| id   year      value ||----------------------|1. |  1   2008   6.264004 |2. |  1   2009   11.11958 |3. |  1   2010    18.7657 |4. |  1   2011   14.72644 |5. |  1   2012   3.848151 ||----------------------|6. |  2   2007   3.902801 |7. |  2   2008    19.0192 |8. |  2   2009   5.808908 |9. |  2   2010   16.38165 |10. |  2   2011   9.764193 |+----------------------+

2.根据unit id 拆分成多个dta

egen count = group(id)
su count,d
global dim = r(max)forv i = 1/$dim{preservekeep if count == `i'drop countsave temp`i'.dta,replace restore
}

3.对于每一个unit滚动求和

先定义滚动3年
然后求这3年内的value的平均 g ˉ \bar{g} gˉ
再用逐年的数值减去均值,
而后求平方项 / 3
最后取对数

forv id = 1/$dim{
use temp`id'.dta,replace
su year ,dglobal row_year = 3  // 三年滚动求和global range_low = r(min)
global range_high = r(max) - $row_year + 1forv i = $range_low/$range_high{local j = `i' + $row_year - 1gen cond_bin = (year >= `i' & year <= `j')egen m_`i' = mean(value) if cond_bin == 1ereplace m_`i' = mean(m_`i')gen rolling_`i' = (value - m_`i')^2 if cond_bin == 1ereplace rolling_`i' = total(rolling_`i') if cond_bin == 1replace rolling_`i' = ln(sqrt(rolling_`i' / $row_year))drop cond_bin
}
keep id rolling*
forv i = $range_low/$range_high{ereplace rolling_`i' = mean(rolling_`i')
}
duplicates drop id ,force 
reshape long rolling_,i(id) j(year)
save rolling_`id'.dta,replace
}

4.合并/清除数据

use rolling_1.dta,replace
forv id = 2/$dim{append using rolling_`id'.dta
}
forv i = 1/$dim{erase temp`i'.dtaerase rolling_`i'.dta
}
save rolling.dta,replace 

5.运行结果

use rolling.dta,clear
list id year roll in 1/6

结果对比可以看到,id=1时,year=2008时,代码计算结果也为1.63,与手动计算结果一致,证明了代码的有效性

     +----------------------+| id   year   rolling_ ||----------------------|1. |  1   2008   1.638221 |2. |  1   2009   1.138851 |3. |  1   2010   1.840516 |4. |  2   2007   1.905365 |5. |  2   2008   1.741902 |6. |  2   2009   1.472856 |+----------------------+

相关文章:

【stata】求滚动波动情况

0.计算对象 计算 t t t、 t 1 t1 t1、 t 2 t2 t2 这三起滚动波动情况 V o l i , t l n ( ∑ n t n t 2 ( g n − g ˉ ) 2 3 ) Vol_{i,t} ln(\sqrt{\frac{\sum_{nt}^{nt2}(g_{n}-\bar{g})^2}{3}}) Voli,t​ln(3∑ntnt2​(gn​−gˉ​)2​ ​) e . g e.g e.g: 假设 200…...

The C programming language (second edition,KR) exercise(CHAPTER 2)

E x c e r c i s e 2 − 1 Excercise\quad 2-1 Excercise2−1&#xff1a;输出结果如图1和图2所示&#xff0c;这道练习题需要文章1和文章2的知识。 #include <stdio.h> #include <limits.h>float getFloat(char sign, unsigned char exp, unsigned mantissa); do…...

rust实现循环链表

作为一个计算机技术专家&#xff0c;针对你的问题&#xff0c;我将首先解释如何使用Rust语言实现循环链表&#xff0c;并提供相应的代码示例。然后&#xff0c;我将解释一个可能的报错问题及其解决方法。 循环链表的实现 在Rust中实现循环链表&#xff0c;首先需要定义链表节…...

2. Spring的创建和Bean的存取

经过前面的学习我们已经大体明白了 IOC 思想以及它的实现方式 DI &#xff0c;本节要讲的是如何Spring框架实现实现DI。 本节目标&#xff1a; Spring(Core) 项目创建将对象存储到 Spring 中将对象(bean)从 Spring 中取出 1. 创建 Spring 项目 与开篇演示的 Spring Boot 项目不…...

策略模式【行为模式C++】

1.概述 策略模式是一种行为设计模式&#xff0c; 它能让你定义一系列算法&#xff0c; 并将每种算法分别放入独立的类中&#xff0c; 以使算法的对象能够相互替换。 策略模式通常应用于需要多种算法进行操作的场景&#xff0c;如排序、搜索、数据压缩等。在这些情况下&#x…...

php中session相关知识(目前了解部分)

#记录学习知识 一.ini_set() 在PHP中&#xff0c;ini_set() 函数用于在脚本运行时设置指定的配置选项的值。这些配置选项可以是PHP的核心设置&#xff0c;例如文件上传的最大大小、脚本的最大执行时间、错误报告级别等。使用 ini_set() 可以临时改变PHP.ini文件中的设置&am…...

从零实现诗词GPT大模型:GPT是怎么生成内容的?

专栏规划: https://qibin.blog.csdn.net/article/details/137728228 再开始编写GPT之前,我们得对GPT是怎么生成内容的有一个大致的了解。目前的神经网络我们大多都可以看成是一个黑盒,即我们把数据输送给网络后,网络给我我们输出,我们可以不用关心这个黑盒里到底是怎么实现…...

8路HDMI+8路AV高清视频流媒体编码器JR-3218HD

产品简介&#xff1a; JR-3218HD高清音视频编码产品支持8路高清HDMI音视频采集功能&#xff0c;8路AV视频采集功能&#xff0c;8路3.5MM独独立音频接口采集功能。编码输出双码流H.264格式&#xff0c;音频MP3/AAC格式。编码码率可调&#xff0c;画面质量可控制。支持HTTP/RTSP…...

LangChain入门:14.LLMChain:最简单的链的使用

摘要 本文将介绍LangChain库中LLMChain工具的使用方法。LLMChain将提示模板、语言模型&#xff08;LLM&#xff09;和输出解析器整合在一起&#xff0c;形成一个连贯的处理链&#xff0c;简化了与语言模型的交互过程。我们将探讨LLMChain的技术特点、应用场景以及它解决的问题…...

深入理解k8s kube-proxy

1、概述 我觉得只要大家知道kube-proxy是用来配置网络规则的而不是转发流量的&#xff0c;真正的流量由iptables/ipvs来转发就可以了。 网络是k8s的一个关键部分。理解k8s中网络组件如何工作可以帮助更好的设计和配置我们的应用。 kube-proxy就是K8s网络的核心组件。它把我们…...

Spark-机器学习(1)什么是机器学习与MLlib算法库的认识

从这一系列开始&#xff0c;我会带着大家一起了解我们的机器学习&#xff0c;了解我们spark机器学习中的MLIib算法库&#xff0c;知道它大概的模型&#xff0c;熟悉并认识它。同时&#xff0c;本篇文章为个人spark免费专栏的系列文章&#xff0c;有兴趣的可以收藏关注一下&…...

java的正则表达式校验,包含了中国几乎所有运营商手机号码的校验格式

时间2024年4月14日22:25:00 代码 String PHONE_REGEX "^1([38][0-9]|4[579]|5[0-3,5-9]|6[6]|7[0135678]|9[89])\\d{8}$";解释 这个Java代码段定义了一个常量 PHONE_REGEX&#xff0c;它包含了一个正则表达式&#xff0c;用于匹配中国大陆的手机号码。下面是对这…...

C#简单工厂模式的实现

using System.Diagnostics.Metrics; using System.Runtime.InteropServices; using static 手写工厂模式.Program;namespace 手写工厂模式 {internal class Program{public interface eats {void eat();}//定义了一个接口public class rice : eats{public void eat() {Console.…...

.NET 设计模式—观察者模式(Observer Pattern)

简介 在.NET中&#xff0c;观察者模式是一种设计模式&#xff0c;它允许对象之间进行一对多的依赖关系。当一个对象的状态发生变化时&#xff0c;所有依赖于它的对象都会收到通知并自动更新。这种模式在事件驱动的设计中非常常见。 在.NET中实现观察者模式&#xff0c;通常涉…...

EasyUI Jquery 学习笔记 ——DataGrid(数据网格)与 Tree(树)详细版

1. DataGrid(数据网格)与 Tree(树) 1.1 Datagrid 数据网格 扩展自 $.fn.panel.defaults。通过 $.fn.datagrid.defaults 重写默认的 defaults。 数据网格(datagrid)以表格格式显示数据,并为选择、排序、分组和编辑数据提供了丰富的支持。数据网格(datagrid)的设计目…...

JAVA发票验真接口、票据ocr、数电票在线查验真伪

发票验真接口&#xff0c;,实时联网核验发票真伪,查验一致返回全票面信息&#xff0c;支持查验增值税发票管理系统开具的发票,支持批量核验发票&#xff0c;翔云发票查验送发票识别,助您摆脱手动输入繁琐,提升工作效率。 发票查验接口适用于银行、金融、代理记账等发票管理数量…...

el-date-picker调用回车事件

elementui的el-date-picker想要调用回车事件&#xff1a; <el-date-pickerv-model"state.date"type"date"value-format"YYYY-MM-DD HH:mm:ss"placeholder"选择日期"clearablekeydown.enter"handleDown"></el-date-…...

js学习总结

这里写目录标题 前情提要JavaScript书写位置1. 内部javaScript (不常用)2. 外部javaScript (常用)3.内联javaScript (常用) js中的输入和输出输出语法1. document.write()2. alert()3. console.log() 输入语法prompt() 前情提要 1. 在javaScript中的 分号 是可以省略的JavaScr…...

MES实施优势有哪些?MES制造执行系统的主要内容

各个行业之间也开始进入到了激烈的竞争当中&#xff0c;很多企业为了能够有效提升企业竞争力&#xff0c;都会通过提升自身实力的方式来提升竞争力。一些制造业也会在经营过程当中使用到MES系统&#xff0c;那么&#xff0c;mes系统的优势有哪些呢&#xff1f; 1、优化企业现场…...

ChatGPT 和 Elasticsearch:使用 Elastic 数据创建自定义 GPT

作者&#xff1a;Sandra Gonzales ChatGPT Plus 订阅者现在有机会创建他们自己的定制版 ChatGPT&#xff0c;称为 GPT&#xff0c;这替代了之前博客文章中讨论的插件。基于本系列的第一部分的基础 —— 我们深入探讨了在 Elastic Cloud 中设置 Elasticsearch 数据和创建向量嵌…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...