当前位置: 首页 > news >正文

【MATLAB】基于Wi-Fi指纹匹配的室内定位-仿真获取WiFi RSSI数据(附代码)

基于Wi-Fi指纹匹配的室内定位-仿真获取WiFi RSSI数据

WiFi指纹匹配是室内定位最为基础和常见的研究,但是WiFi指纹的采集可以称得上是labor-intensive和time-consuming。现在,给大家分享一下我们课题组之前在做WiFi指纹定位时的基于射线跟踪技术仿真WiFi RSSI实验代码。

对数路径损耗模型

WiFi信号强度在空间中传播符合路径损耗模型。本文介绍的是较为常用的对数路径损耗模型,如下公式:
在这里插入图片描述
RSS衰减与距离的对数呈正比,假设已知一个参考距离d0以及这个距离上的RSS为
RSS(d0),那么距离为d的RSS(d)就可以通过上式计算得到。n是环境因子,在自由空间中一般取2就可以。
下图是实际RSS和模型仿真RSS的比较。在实际环境中,因为受到多径效应、非视距传播等噪声的影响,信号强度会发生变化,所以实际测量到的Wi-Fi信号一般如红线所示。

在这里插入图片描述

利用射线跟踪技术仿真得到Wi-Fi的RSSI数据

Wi-Fi信号沿直线传播,可以将其近似为射线进行分析。对于一个固定的发射源(即WiFi AP),在自由空间中,利用对数距离衰减模型即可计算各个位置的RSS,但是室内环境很复杂,信号可以遇到墙壁发生反射,各个反射后的信号又可以与未经反射的信号叠加,实际中测量到的信号其实包括了各个反射、绕射、散射信号。在射线跟踪中,计算出发射点与接收点之间的多条传播路径,分别对各个路径的信号进行分析,一般包括信号强度、相位在多次反射或绕射下的计算,然后叠加得到接收点上的信号。
在仿真实验中,我们把每个Wi-Fi AP看成一个固定的发射源,而接收器则要接受来自不同Wi-Fi AP的信号。接收器收到的信号中包含了来自每个WiFi AP的1条直射路径与6条(墙壁)反射路径的信号,因为反射后信号很小,所以我们不考虑反射信号路径。根据对数路径损耗模型,我们理论上可以计算出室内每点的WiFi RSSI强度,用于室内定位指纹库建立。
如下图,是仿真得到的某WiFi AP所覆盖的WiFi信号强度。
在这里插入图片描述

仿真实验MATLAB代码

实际上在射线仿真实验中涉及到了通信原理的知识,但是因为我本人不是通信出身,所以不做具体说明,想要了解射线传播原理的同学自己搜索相关知识~
以下是主程序代码:

if ~exist('radio_map_20_15.mat', 'file') %生成仿真环境disp('正在模拟射线跟踪...');generate_radio_map(0.01);  % 仿真射线网格大小
endclc
clear;
load radio_map_30_30.mat; 
%变量为fingerprint %默认尺寸为20m*15m * 10ap,网格大小为0.01m
%注意:这里的仿真环境(fingerprint)是一个精度很高的指纹库,后面从这个仿真环境中进行取样(采集数据)并生成用于定位的指纹库。%% 获取离线指纹库
%如果要研究指纹库构建上的优化,在这部分改进
[offline_rss, offline_location] = get_offline_data_uniform(fingerprint,100); %均匀采样
offline_location=offline_location/100; 
idx=[1:1:length(offline_location)]';
offline_location=[offline_location,idx];
save('offline_data_uniform', 'offline_rss', 'offline_location');
[offline_rss, offline_location] = get_offline_data_random(fingerprint); %随机采样
offline_location=offline_location/100;
save('offline_data_random', 'offline_rss', 'offline_location');%% 获取在线定位阶段的数据
%前面默认的数据集的密度是0.01m,这样的话整个仿真系统的位置最小分辨率为0.01m,trace总是0.01的整数倍
roomLength = 30;
roomWidth = 30;
t = 1000;
[ loc, rss ] = get_online_data( fingerprint, 1, roomLength, roomWidth, t ); %得到轨迹与对应的RSS
save('online_data', 'loc', 'rss');
%%
clear fingerprint;

本仿真实验的完整代码:仿真获取WiFi RSSI数据
WiFi指纹定位的项目代码:WiFi指纹定位

相关文章:

【MATLAB】基于Wi-Fi指纹匹配的室内定位-仿真获取WiFi RSSI数据(附代码)

基于Wi-Fi指纹匹配的室内定位-仿真获取WiFi RSSI数据 WiFi指纹匹配是室内定位最为基础和常见的研究,但是WiFi指纹的采集可以称得上是labor-intensive和time-consuming。现在,给大家分享一下我们课题组之前在做WiFi指纹定位时的基于射线跟踪技术仿真WiFi…...

深圳晶彩智能ESP32-3248S035R使用LovyanGFX实现手写板

深圳晶彩智能ESP32-3248S035R介绍 深圳晶彩智能出品ESP32-3248S035R为3.5寸彩色屏采用分辨率480x320彩色液晶屏,驱动芯片是ST7796。板载乐鑫公司出品ESP-WROOM-32,Flash 4M。型号尾部“R”标识电阻膜的感压式触摸屏,驱动芯片是XPT2046。 Lo…...

【Spring Boot】深入解密Spring Boot日志:最佳实践与策略解析

💓 博客主页:从零开始的-CodeNinja之路 ⏩ 收录文章:【Spring Boot】深入解密Spring Boot日志:最佳实践与策略解析 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 Spring Boot 日志一. 日志的概念?…...

ISTQB选择国内版,还是国际版呢

1, ISTQB简介 ISTQB(International Software Testing Qualifications Board)是一个国际软件测试资格认证机构,旨在提供一个统一的软件测试认证标准。ISTQB成立于2002年,是非盈利性的组织,由世界各地的国家或地区软件测…...

头歌-机器学习 第11次实验 softmax回归

第1关:softmax回归原理 任务描述 本关任务:使用Python实现softmax函数。 相关知识 为了完成本关任务,你需要掌握:1.softmax回归原理,2.softmax函数。 softmax回归原理 与逻辑回归一样,softmax回归同样…...

Qt for MCUs 2.7正式发布

本文翻译自:Qt for MCUs 2.7 released 原文作者:Qt Group高级产品经理Yoann Lopes 翻译:Macsen Wang Qt for MCUs的新版本已发布,为Qt Quick Ultralite引擎带来了新功能,增加了更多MCU平台的支持,并且我们…...

共享IP和独享IP如何选择,两者有何区别?

有跨境用户在选择共享IP和独享IP时会有疑问,不知道该如何进行选择,共享IP和独享IP各有其特点和应用场景,选择哪种方式主要取决于具体需求和预算。以下是对两者的详细比较: 首先两者的主要区别在于使用方式和安全性:共…...

文心一言VSchatGPT4

文心一言和GPT-4各有优势,具体表现在不同的测试场景下。 在某些测试场景中心一言的表现优于GPT-4,例如在故事的完整度和情节吸引力方面,文心一言表现得更加符合指令,情节更吸引人。这可能得益于其模型在训练时对中文语境的深入理…...

Linux 目录结构与基础查看命令

介绍 目录结构如下 /bin:存放着用户最经常使用的二进制可执行命令,如cp、ls、cat等。这些命令是系统管理员和普通用户进行日常操作所必需的。 /boot:存放启动系统使用的一些核心文件,如引导加载器(bootstrap loader…...

【matlab】如何解决打开缓慢问题(如何让matlab在十几秒内打开)

【matlab】如何解决打开缓慢问题(如何让matlab在十几秒内打开) 找到我们解压缩时Crack中的license_standalone.lic文件,将其拷贝 在安装matlab的路径下新建一个文件,粘贴上面的license_standalone.lic文件 在桌面鼠标移动到matl…...

【stata】求滚动波动情况

0.计算对象 计算 t t t、 t 1 t1 t1、 t 2 t2 t2 这三起滚动波动情况 V o l i , t l n ( ∑ n t n t 2 ( g n − g ˉ ) 2 3 ) Vol_{i,t} ln(\sqrt{\frac{\sum_{nt}^{nt2}(g_{n}-\bar{g})^2}{3}}) Voli,t​ln(3∑ntnt2​(gn​−gˉ​)2​ ​) e . g e.g e.g: 假设 200…...

The C programming language (second edition,KR) exercise(CHAPTER 2)

E x c e r c i s e 2 − 1 Excercise\quad 2-1 Excercise2−1&#xff1a;输出结果如图1和图2所示&#xff0c;这道练习题需要文章1和文章2的知识。 #include <stdio.h> #include <limits.h>float getFloat(char sign, unsigned char exp, unsigned mantissa); do…...

rust实现循环链表

作为一个计算机技术专家&#xff0c;针对你的问题&#xff0c;我将首先解释如何使用Rust语言实现循环链表&#xff0c;并提供相应的代码示例。然后&#xff0c;我将解释一个可能的报错问题及其解决方法。 循环链表的实现 在Rust中实现循环链表&#xff0c;首先需要定义链表节…...

2. Spring的创建和Bean的存取

经过前面的学习我们已经大体明白了 IOC 思想以及它的实现方式 DI &#xff0c;本节要讲的是如何Spring框架实现实现DI。 本节目标&#xff1a; Spring(Core) 项目创建将对象存储到 Spring 中将对象(bean)从 Spring 中取出 1. 创建 Spring 项目 与开篇演示的 Spring Boot 项目不…...

策略模式【行为模式C++】

1.概述 策略模式是一种行为设计模式&#xff0c; 它能让你定义一系列算法&#xff0c; 并将每种算法分别放入独立的类中&#xff0c; 以使算法的对象能够相互替换。 策略模式通常应用于需要多种算法进行操作的场景&#xff0c;如排序、搜索、数据压缩等。在这些情况下&#x…...

php中session相关知识(目前了解部分)

#记录学习知识 一.ini_set() 在PHP中&#xff0c;ini_set() 函数用于在脚本运行时设置指定的配置选项的值。这些配置选项可以是PHP的核心设置&#xff0c;例如文件上传的最大大小、脚本的最大执行时间、错误报告级别等。使用 ini_set() 可以临时改变PHP.ini文件中的设置&am…...

从零实现诗词GPT大模型:GPT是怎么生成内容的?

专栏规划: https://qibin.blog.csdn.net/article/details/137728228 再开始编写GPT之前,我们得对GPT是怎么生成内容的有一个大致的了解。目前的神经网络我们大多都可以看成是一个黑盒,即我们把数据输送给网络后,网络给我我们输出,我们可以不用关心这个黑盒里到底是怎么实现…...

8路HDMI+8路AV高清视频流媒体编码器JR-3218HD

产品简介&#xff1a; JR-3218HD高清音视频编码产品支持8路高清HDMI音视频采集功能&#xff0c;8路AV视频采集功能&#xff0c;8路3.5MM独独立音频接口采集功能。编码输出双码流H.264格式&#xff0c;音频MP3/AAC格式。编码码率可调&#xff0c;画面质量可控制。支持HTTP/RTSP…...

LangChain入门:14.LLMChain:最简单的链的使用

摘要 本文将介绍LangChain库中LLMChain工具的使用方法。LLMChain将提示模板、语言模型&#xff08;LLM&#xff09;和输出解析器整合在一起&#xff0c;形成一个连贯的处理链&#xff0c;简化了与语言模型的交互过程。我们将探讨LLMChain的技术特点、应用场景以及它解决的问题…...

深入理解k8s kube-proxy

1、概述 我觉得只要大家知道kube-proxy是用来配置网络规则的而不是转发流量的&#xff0c;真正的流量由iptables/ipvs来转发就可以了。 网络是k8s的一个关键部分。理解k8s中网络组件如何工作可以帮助更好的设计和配置我们的应用。 kube-proxy就是K8s网络的核心组件。它把我们…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...