[目标检测] OCR: 文字检测、文字识别、text spotter
概述
OCR技术存在两个步骤:文字检测和文字识别,而end-to-end完成这两个步骤的方法就是text spotter。
文字检测数据集摘要
| daaset | 语言 | 体量 | 特色 |
|---|---|---|---|
| MTWI | 中英文 | 20k | 源于网络图像,主要由合成图像,产品描述,网络广告(淘宝) |
| MSRA-TD500 | 中英文 | ||
| SynthText | 800k img + 8000k text | 合成数据 | |
| CTW1500 | 中文 | 32k | 野外场景 |
| ICDAR 2015 | |||
| ICDAR 2019-ReCTS | 中文 | 标识牌上的文字(店铺名等) | |
| ICDAR2019-ArT | 中英文 | 组合Total-Text+SCUT-CTW1500+Baidu Curved Scene Text | |
| ICDAR2019-LSVT | 中英文 | 30k full annotation + 40k weakly annotation | Large-scale Street View Text with Partial Labeling, |
| ICDAR2017-DeText | Text Extraction from Biomedical Literature Figures, 生物医学文献图形中的文本提取 | ||
| ICDAR 2011 (Born-Digital Images)、ICDAR 2017 | 英文 | ||
| CurvedSynText150k | 英文 | ||
| Total-Text | 英文+少量中文 | 1.5k | 各种形状的文本,包括水平的,多取向的和弯曲的 |
| Lecture Video DB | |||
| IMGUR | handwriting | ||
| KAIST | |||
| ILST | 印度语言 | 三种印度语言(Devanagari 、 Telugu 和Malayalam)的场景文本识别数据集 | |
| VinText | |||
| BID | 巴西身份证件数据集 | ||
| RCTW | 12k+ | 手机野外拍摄,包括街景、海报、菜单、室内场景以及手机应用的截图 | |
| HierText (Google) | 英文 | 自然图像或者文献 |
OCR方法
前沿text spotter方法
- PSENet、PAN、PAN++(PAMI 2021)
- DeepSolo (CVPR2023)
方法框架
- mmocr: 集成方法并不是最新的(2022年以前的),其中预训练方法只支持英文,文字检测方法还可以检测出中文,文字识别无法识别中文,text spotter尚未介入到统一的接口中。
Github high star
- tesseract(57.7k star):大概率是文字识别模型,C/C++,提供command line tool。
- PaddleOCR(38.1k star): 80+ language support。提供轻量化、提供在线demo(后面有测试),provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices。
- EasyOCR(21.8k star): pytorch based,文字检测基于CRAFT,识别基于LSTM+Transformer。Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.提供 在线DEMO。
- tesseract.js (33.2k star): pure Javascript OCR for more than 100 Languages。
- UniOCR (20.6k star): 提供一个界面。
- OCRmyPDF (11.8k star): 解析pdf图片,基于tesseract。
PaddleOCR(PP-OCRv4)测试图如下
(1)弧形分布文字检测和识别都不准

(2) 放大了也识别不出来,应该和training data相关
Reference
- https://mmocr.readthedocs.io/en/dev-1.x/
相关文章:
[目标检测] OCR: 文字检测、文字识别、text spotter
概述 OCR技术存在两个步骤:文字检测和文字识别,而end-to-end完成这两个步骤的方法就是text spotter。 文字检测数据集摘要 daaset语言体量特色MTWI中英文20k源于网络图像,主要由合成图像,产品描述,网络广告(淘宝)MS…...
Windows环境下删除MySQL
文章目录 一、关闭MySQL服务1、winR打开运行,输入services.msc回车2、服务里找到MySQL并停止 二、卸载MySQL软件1、打开控制模板--卸载程序--卸载MySQL相关的所有组件 三、删除MySQL在物理硬盘上的所有文件1、删除MySQL的安装目录(默认在C盘下的Program …...
uniapp:uview-plus的一些记录
customStyle 并不是所有的组件都有customStyle属性来设置自定义属性,有的还是需要通过::v-deep来修改内置样式 form表单 labelStyle 需要的是一个对象 :labelStyle"{color: #333333,fontSize: 32rpx,fontWeight: 500}"dateTimePicker选择器设置默认值…...
OLTP 与 OLAP 系统说明对比和大数据经典架构 Lambda 和 Kappa 说明对比——解读大数据架构(五)
文章目录 前言OLTP 和 OLAPSMP 和 MPPlambda 架构Kappa 架构 前言 本文我们将研究不同类型的大数据架构设计,将讨论 OLTP 和 OLAP 的系统设计,以及有效处理数据的策略包括 SMP 和 MPP 等概念。然后我们将了解经典的 Lambda 架构和 Kappa 架构。 OLTP …...
步骤大全:网站建设3个基本流程详解
一.领取一个免费域名和SSL证书,和CDN 1.打开网站链接:https://www.rainyun.com/z22_ 2.在网站主页上,您会看到一个"登陆/注册"的选项。 3.点击"登陆/注册",然后选择"微信登录"选项。 4.使用您的…...
利用Sentinel解决雪崩问题(二)隔离和降级
前言: 虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了,不管是线程隔离还是熔断降级,都是对客户端(调…...
基于springboot的房产销售系统源码数据库
基于springboot的房产销售系统源码数据库 摘 要 随着科学技术的飞速发展,各行各业都在努力与现代先进技术接轨,通过科技手段提高自身的优势;对于房产销售系统当然也不能排除在外,随着网络技术的不断成熟,带动了房产…...
【MATLAB】基于Wi-Fi指纹匹配的室内定位-仿真获取WiFi RSSI数据(附代码)
基于Wi-Fi指纹匹配的室内定位-仿真获取WiFi RSSI数据 WiFi指纹匹配是室内定位最为基础和常见的研究,但是WiFi指纹的采集可以称得上是labor-intensive和time-consuming。现在,给大家分享一下我们课题组之前在做WiFi指纹定位时的基于射线跟踪技术仿真WiFi…...
深圳晶彩智能ESP32-3248S035R使用LovyanGFX实现手写板
深圳晶彩智能ESP32-3248S035R介绍 深圳晶彩智能出品ESP32-3248S035R为3.5寸彩色屏采用分辨率480x320彩色液晶屏,驱动芯片是ST7796。板载乐鑫公司出品ESP-WROOM-32,Flash 4M。型号尾部“R”标识电阻膜的感压式触摸屏,驱动芯片是XPT2046。 Lo…...
【Spring Boot】深入解密Spring Boot日志:最佳实践与策略解析
💓 博客主页:从零开始的-CodeNinja之路 ⏩ 收录文章:【Spring Boot】深入解密Spring Boot日志:最佳实践与策略解析 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 Spring Boot 日志一. 日志的概念?…...
ISTQB选择国内版,还是国际版呢
1, ISTQB简介 ISTQB(International Software Testing Qualifications Board)是一个国际软件测试资格认证机构,旨在提供一个统一的软件测试认证标准。ISTQB成立于2002年,是非盈利性的组织,由世界各地的国家或地区软件测…...
头歌-机器学习 第11次实验 softmax回归
第1关:softmax回归原理 任务描述 本关任务:使用Python实现softmax函数。 相关知识 为了完成本关任务,你需要掌握:1.softmax回归原理,2.softmax函数。 softmax回归原理 与逻辑回归一样,softmax回归同样…...
Qt for MCUs 2.7正式发布
本文翻译自:Qt for MCUs 2.7 released 原文作者:Qt Group高级产品经理Yoann Lopes 翻译:Macsen Wang Qt for MCUs的新版本已发布,为Qt Quick Ultralite引擎带来了新功能,增加了更多MCU平台的支持,并且我们…...
共享IP和独享IP如何选择,两者有何区别?
有跨境用户在选择共享IP和独享IP时会有疑问,不知道该如何进行选择,共享IP和独享IP各有其特点和应用场景,选择哪种方式主要取决于具体需求和预算。以下是对两者的详细比较: 首先两者的主要区别在于使用方式和安全性:共…...
文心一言VSchatGPT4
文心一言和GPT-4各有优势,具体表现在不同的测试场景下。 在某些测试场景中心一言的表现优于GPT-4,例如在故事的完整度和情节吸引力方面,文心一言表现得更加符合指令,情节更吸引人。这可能得益于其模型在训练时对中文语境的深入理…...
Linux 目录结构与基础查看命令
介绍 目录结构如下 /bin:存放着用户最经常使用的二进制可执行命令,如cp、ls、cat等。这些命令是系统管理员和普通用户进行日常操作所必需的。 /boot:存放启动系统使用的一些核心文件,如引导加载器(bootstrap loader…...
【matlab】如何解决打开缓慢问题(如何让matlab在十几秒内打开)
【matlab】如何解决打开缓慢问题(如何让matlab在十几秒内打开) 找到我们解压缩时Crack中的license_standalone.lic文件,将其拷贝 在安装matlab的路径下新建一个文件,粘贴上面的license_standalone.lic文件 在桌面鼠标移动到matl…...
【stata】求滚动波动情况
0.计算对象 计算 t t t、 t 1 t1 t1、 t 2 t2 t2 这三起滚动波动情况 V o l i , t l n ( ∑ n t n t 2 ( g n − g ˉ ) 2 3 ) Vol_{i,t} ln(\sqrt{\frac{\sum_{nt}^{nt2}(g_{n}-\bar{g})^2}{3}}) Voli,tln(3∑ntnt2(gn−gˉ)2 ) e . g e.g e.g: 假设 200…...
The C programming language (second edition,KR) exercise(CHAPTER 2)
E x c e r c i s e 2 − 1 Excercise\quad 2-1 Excercise2−1:输出结果如图1和图2所示,这道练习题需要文章1和文章2的知识。 #include <stdio.h> #include <limits.h>float getFloat(char sign, unsigned char exp, unsigned mantissa); do…...
rust实现循环链表
作为一个计算机技术专家,针对你的问题,我将首先解释如何使用Rust语言实现循环链表,并提供相应的代码示例。然后,我将解释一个可能的报错问题及其解决方法。 循环链表的实现 在Rust中实现循环链表,首先需要定义链表节…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
