当前位置: 首页 > news >正文

Hello 算法10:搜索

https://www.hello-algo.com/chapter_searching/binary_search/

二分查找法

给定一个长度为 n的数组 nums ,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 target 在该数组中的索引。若数组不包含该元素,则返回 -1 。

# 首先初始化 i=0,j=n-1, 代表搜索区间是[0,n-1]
# 然后,循环执行以下2个步骤
# 1:m = (i+j)/2 ,向下取整,求出搜索区间的中间点
# 2:判断nums[m]和target的大小关系,有以下三种情况:
#    a:nums[m] > target,说明目标在区间[i,m-1],所以让j = m - 1
#    b: nums[m] < target,说明目标在区间[m+1,j],所以让i = m + 1
#    c:说明已经找到目标值,因此返回索引m

代码如下:

def binary_search(nums: list[int], target: int):i, j = 0, len(nums) - 1while i <= j:m = (i+j) // 2if nums[m] > target:j = m -1elif nums[m] < target:i = m + 1else:return mreturn -1

优点:效率高,无需额外空间

缺点:仅适用于有序数据,仅使用数数组搜索,当数据量较小时,线性查找速度更快。

二分查找插入点

给定一个长度为 n的有序数组 nums 和一个元素 target ,数组不存在重复元素。现将 target 插入到数组 nums 中,并保持其有序性。若数组中已存在元素 target ,则插入到其左方。请返回插入后 target 在数组中的索引。

  1. 当target存在时,插入的索引就是taget的位置
  2. 当target不存在时:如果target > nums[m],让i = m +1 ,所以i在靠着大于等于目标的位置移动;反之j在靠着小于等于目标的位置移动,这导致的结果就是,最终i等于第一个比目标大的元素,j指向首个比目标小的元素。

可知,最终返回i即是插入的位置

def binary_search_insertion_simple(nums: list[int], target: int) -> int:"""二分查找插入点(无重复元素)"""i, j = 0, len(nums) - 1  # 初始化双闭区间 [0, n-1]while i <= j:m = (i + j) // 2  # 计算中点索引 mif nums[m] < target:i = m + 1  # target 在区间 [m+1, j] 中elif nums[m] > target:j = m - 1  # target 在区间 [i, m-1] 中else:return m  # 找到 target ,返回插入点 m# 未找到 target ,返回插入点 ireturn i

重复值的情况

在上一题的基础上,规定数组可能包含重复元素,其余不变

def binary_search_insertion(nums: list[int], target: int) -> int:"""二分查找插入点(存在重复元素)"""i, j = 0, len(nums) - 1  # 初始化双闭区间 [0, n-1]while i <= j:m = (i + j) // 2  # 计算中点索引 mif nums[m] < target:i = m + 1  # target 在区间 [m+1, j] 中elif nums[m] > target:j = m - 1  # target 在区间 [i, m-1] 中else:j = m - 1  # 首个小于 target 的元素在区间 [i, m-1] 中# 返回插入点 ireturn i

查找左边界

def binary_search_left_edge(nums: list[int], target: int) -> int:"""二分查找最左一个 target"""# 等价于查找 target 的插入点i = binary_search_insertion(nums, target)# 未找到 target ,返回 -1if i == len(nums) or nums[i] != target:return -1# 找到 target ,返回索引 ireturn i

查找右边界

替换在 nums[m] == target 情况下的指针收缩操作即可,接下来介绍一些取巧的办法

  1. 复用左边界法,使查找目标加一

    def binary_search_right_edge(nums: list[int], target: int) -> int:"""二分查找最右一个 target"""# 转化为查找最左一个 target + 1i = binary_search_insertion(nums, target + 1)# j 指向最右一个 target ,i 指向首个大于 target 的元素j = i - 1# 未找到 target ,返回 -1if j == -1 or nums[j] != target:return -1# 找到 target ,返回索引 jreturn j
    
  2. 转换为查找不存在的元素

    当数组不包含目标元素时,最终i和j会分别指向首个大于、小于target的元素:

    查找最左侧元素时,可以将目标设置为targe-0.5,最终返回i

    查找最右侧元素时,可以将目标设置为target+0.5,最终返回j

    在这里插入图片描述

哈希优化

在算法题中,通常通过将线性遍历替换为哈希搜索来提升时间复杂度。例如以下题目

给定一个整数数组 nums 和一个目标元素 target ,请在数组中搜索“和”为 target 的两个元素,并返回它们的数组索引。返回任意一个解即可。

线性遍历

开启一个两层循环,每次判断是否和为目标值。简单粗暴

def two_sum_brute_force(nums: list[int], target: int) -> list[int]:"""方法一:暴力枚举"""# 两层循环,时间复杂度为 O(n^2)n = len(nums)for i in range(n):for j in range(i+1, n):if nums[i] + nums[i] == target:return [i, j]return []

哈希查找

def two_sum_hash_table(nums: list[int], target: int) -> list[int]:"""方法二:辅助哈希表"""# 辅助哈希表,空间复杂度为 O(n)dic = {}n = len(nums)for i in range(n):if target - nums[i] not in dic:dic[nums[i]] = ielse:return [dic[target - nums[i]], i]return []

搜索算法总结

搜索算法根据实现方式可以分为以下两类:

  • 通过遍历数据结构来定位元素,例如数组、图、树的遍历等
  • 利用数据结构的特性,实现高效搜索,例如二分查找、哈希查找

暴力搜索

  • 线性搜索,适用于数组、链表
  • 广度优先和深度优先搜索,适用于图、树

优点是通用性好,容易理解,不需要对数据结构做预期处理;不需要额外空间。

缺点是此类算法的时间复杂度为O(n),因此在元素较多时效率较低

自适应搜索

自适应搜索利用数据结构的特性来优化搜索

  • 二分查找,利用有序性来进行搜索,仅适用于数组
  • 哈希查找,利用哈希表将搜索数据和目标数据建立键值对映射,从而实现查询操作
  • 树查找

效率高,可达到o(logn)甚至o(1)

缺点:需要对数据进行预处理,需要额外空间

搜索方法选取

在这里插入图片描述

表 10-1 查找算法效率对比

线性搜索二分查找树查找哈希查找
查找元素O(n)O(log⁡n)O(log⁡n)O(1)
插入元素O(1)O(n)O(log⁡n)O(1)
删除元素O(n)O(n)O(log⁡n)O(1)
额外空间O(1)O(1)O(log⁡n)O(n)
数据预处理/排序 O(nlog⁡n)建树 O(nlog⁡n)建哈希表 O(n)
数据是否有序无序有序有序无序

搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。

相关文章:

Hello 算法10:搜索

https://www.hello-algo.com/chapter_searching/binary_search/ 二分查找法 给定一个长度为 n的数组 nums &#xff0c;元素按从小到大的顺序排列&#xff0c;数组不包含重复元素。请查找并返回元素 target 在该数组中的索引。若数组不包含该元素&#xff0c;则返回 -1 。 # 首…...

常见分类算法详解

在机器学习和数据科学的广阔领域中&#xff0c;分类算法是至关重要的一环。它广泛应用于各种场景&#xff0c;如垃圾邮件检测、图像识别、情感分析等。本文将深入剖析几种常见的分类算法&#xff0c;帮助读者理解其原理、优缺点以及应用场景。 一、K近邻算法&#xff08;K-Nea…...

推送恶意软件的恶意 PowerShell 脚本看起来是人工智能编写的

威胁行为者正在使用 PowerShell 脚本&#xff0c;该脚本可能是在 OpenAI 的 ChatGPT、Google 的 Gemini 或 Microsoft 的 CoPilot 等人工智能系统的帮助下创建的。 攻击者在 3 月份的一次电子邮件活动中使用了该脚本&#xff0c;该活动针对德国的数十个组织来传播 Rhadamanthy…...

微服务之Consul 注册中心介绍以及搭建

一、微服务概述 1.1单体架构 单体架构&#xff08;monolithic structure&#xff09;&#xff1a;顾名思义&#xff0c;整个项目中所有功能模块都在一个工程中开发&#xff1b;项目部署时需要对所有模块一起编译、打包&#xff1b;项目的架构设计、开发模式都非常简单。 当项…...

MES生产管理系统:私有云、公有云与本地化部署的比较分析

随着信息技术的迅猛发展&#xff0c;云计算作为一种新兴的技术服务模式&#xff0c;已经深入渗透到企业的日常运营中。在众多部署方式中&#xff0c;私有云、公有云和本地化部署是三种最为常见的选择。它们各自具有独特的特点和适用场景&#xff0c;并在不同程度上影响着企业的…...

【core analyzer】core analyzer的介绍和安装详情

目录 &#x1f31e;1. core和core analyzer的基本概念 &#x1f33c;1.1 coredump文件 &#x1f33c;1.2 core analyzer &#x1f31e;2. core analyzer的安装详细过程 &#x1f33c;2.1 方式一 简单但不推荐 &#x1f33c;2.2 方式二 推荐 &#x1f33b;2.2.1 安装遇到…...

个人练习之-jenkins

虚拟机环境搭建(买不起服务器 like me) 重点: 0 虚拟机防火墙关闭 systemctl stop firewalld.service systemctl disable firewalld.service 1 (centos7.6)网络配置 (vmware 编辑 -> 虚拟网络编辑器 -> 选择NAT模式 ->NAT设置查看网关) vim /etc/sysconfig/network-sc…...

初探vercel托管项目

文章目录 第一步、注册与登录第二步、本地部署 在个人网站部署的助手vercel&#xff0c;支持 Github部署&#xff0c;只需简单操作&#xff0c;即可发布&#xff0c;方便快捷&#xff01; 第一步、注册与登录 进入vercel【官网】&#xff0c;在右上角 login on&#xff0c;可登…...

软考 - 系统架构设计师 - 质量属性例题 (2)

问题1&#xff1a; 、 问题 2&#xff1a; 系统架构风险&#xff1a;指架构设计中 &#xff0c;潜在的&#xff0c;存在问题的架构决策所带来的隐患。 敏感点&#xff1a;指为了实现某个质量属性&#xff0c;一个或多个构件所具有的特性 权衡点&#xff1a;指影响多个质量属性…...

基于Python豆瓣电影数据可视化分析系统的设计与实现

大数据可视化项目——基于Python豆瓣电影数据可视化分析系统的设计与实现 2024最新项目 项目介绍 本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示&#xff0c;构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据&#xff0c;我们提供了…...

【已开源】​基于stm32f103的爬墙小车

​基于stm32f103的遥控器无线控制爬墙小车&#xff0c;实现功能为可平衡在竖直墙面上&#xff0c;并进行移动和转向&#xff0c;具有超声波防撞功能。 直接上&#xff1a; 演示视频如&#xff1a;哔哩哔哩】 https://b23.tv/BzVTymO 项目说明&#xff1a; 在这个项目中&…...

PCL 基于马氏距离KMeans点云聚类

文章目录 一、简介二、算法步骤三、代码实现四、实现效果参考资料一、简介 在诸多的聚类方法中,K-Means聚类方法是属于“基于原型的聚类”(也称为原型聚类)的方法,此类方法均是假设聚类结构能通过一组原型刻画,在现实聚类中极为常用。通常情况下,该类算法会先对原型进行初始…...

libVLC 视频窗口上叠加透明窗口

很多时候&#xff0c;我们需要在界面上画一些三角形、文字等之类的东西&#xff0c;我们之需要重写paintEvent方法&#xff0c;比如像这样 void Widget::paintEvent(QPaintEvent *event) 以下就是重写的代码。 void Widget::paintEvent(QPaintEvent *event) {//创建QPainte…...

MySQL基础入门上篇

MySQL基础 介绍 mysql -uroot -p -h127.0.0.1 -P3306项目设计 具备数据库一定的设计能力和操作数据的能力。 数据库设计DDL 定义 操作 显示所有数据库 show databases;创建数据库 create database db02;数据库名唯一&#xff0c;不能重复。 查询是否创建成功 加入一些…...

Docker搭建FFmpeg

FFmpeg 是一套可以用来记录、转换数字音频、视频&#xff0c;并能将其转化为流的完整解决方案。FFmpeg 包含了领先的音视频编解码库libavcodec&#xff0c;可以用于各种视频格式的转换。 应用场景包括&#xff1a; 视频转换&#xff1a;把视频从一种格式转换成另一种格式。视…...

Hudi-ubuntu环境搭建

hudi-ubuntu环境搭建 运行 1.编译Hudi #1.把maven安装包上传到服务器 # 官网下载安装包 https://archive.apache.org/dist/maven/maven-3/ scp -r D:\Users\zh\Desktop\Hudi\compressedPackage\apache-maven-3.6.3-bin.tar.gz zhangheng10.8.4.212:/home/zhangheng/hudi/com…...

Hive进阶Day05

一、HDFS分布式文件存储系统 1-1 HDFS的存储机制 按块&#xff08;block&#xff09;存储 hdfs在对文件数据进行存储时&#xff0c;默认是按照128M(包含)大小进行文件数据拆分&#xff0c;将不同拆分的块数据存储在不同datanode服务器上 拆分后的块数据会被分别存储在不同的服…...

ssh爆破服务器的ip-疑似肉鸡

最近发现自己的ssh一直有一些人企图使用ssh暴力破解的方式进行密码破解.就查看了一下,真是网络安全太可怕了. 大家自己的服务器密码还是要设置好,管好,做好最基本的安全措施,不然最后只能沦为肉鸡. ssh登陆日志可以在/var/log下看到,ubuntu的话为auth.log,centos为secure文件 查…...

4.JVM八股

JVM空间划分 线程共享和线程私有 1.7&#xff1a; 线程共享&#xff1a; 堆、方法区 线程私有&#xff1a; 虚拟机栈、本地方法栈、程序计数器 本地内存 1.8&#xff1a; 线程共享&#xff1a; 堆 线程私有&#xff1a; 老三样 本地内存&#xff0c;元空间 程序计数器 …...

内网渗透系列-mimikatz的使用以及后门植入

内网渗透系列-mimikatz的使用以及后门植入 文章目录 内网渗透系列-mimikatz的使用以及后门植入前言mimikatz的使用后门植入 msf永久后门植入 &#xff08;1&#xff09;Meterpreter后门&#xff1a;Metsvc&#xff08;2&#xff09;Meterpreter后门&#xff1a;Persistence NC后…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...