当前位置: 首页 > news >正文

从零实现诗词GPT大模型:数据集介绍和预处理

专栏规划: https://qibin.blog.csdn.net/article/details/137728228

本章将介绍该系列文章中使用的数据集,并且编写预处理代码,处理成咱们需要的格式。

一、数据集介绍

咱们使用的数据集名称是chinese-poetry,是一个在github上开源的中文诗词数据集,根据仓库中readme.md中的介绍,该数据集是最全的中华古典文集数据库,包含 5.5 万首唐诗、26 万首宋诗、2.1 万首宋词和其他古典文集。诗人包括唐宋两朝近 1.4 万古诗人,和两宋时期 1.5 千古词人。
数据集的下载地址:https://github.com/chinese-poetry/chinese-poetry?tab=readme-ov-file,大家可以点击Code按钮,选择Download ZIP将该数据集下载到本地,如下图:
下载数据集
当然,作者收集数据也不易,大家可以顺手点一下star鼓励一下作者,如图:
start
如果你按照上面的步骤,把数据集下载到你本地了,解压后你可以看到如下图所示的目录结构
数据集

作者按照不同诗词类型进行了分类,并且在每个分类下提供了1个到多个的json文件,json文件里按照结构化数据组织了每一个诗词的信息,如下图
诗词结构

二、数据集预处理

上面咱们详细介绍了chinese-poetry数据集的下载方式和作者组织的结构,下面我们将提取每个诗词的标题和内容作为我们需要的部分,并聚合到一个文件中,以方便我们后续训练模型使用。
首先,我们需要把作者提供的诗词类目整理到一个数组中,方便我们后续进行目录的变量

classes = ['五代诗词', '元曲', '全唐诗', '四书五经', '宋词', '幽梦影', '御定全唐詩', '曹操诗集', '楚辞', '水墨唐诗','纳兰性德', '蒙学', '论语', '诗经']

然后,我们可以遍历该数组,拼接一个目录,遍历目录中中的文件,再进行文件处理

for cls in classes:dir = base_dir + clsfiles = os.listdir(dir)for f in files:f = f'{dir}/{f}'if os.path.isdir(f):if 'error' in f:continuefor ff in os.listdir(f):process_json(f'{f}/{ff}')else:process_json(f)

上面代码中,我们遍历每个类别的目录后,会列出该类别中所有的文件,文件如果是一个目录,则继续遍历这个目录,因为作者提供的目录结构会存在二级目录的情况。
最后,拿到每个json文件后,会调用process_json()函数处理对应的json文件。下面我们开始介绍process_json()函数。

process_json()函数会对上面代码中拿到的每个json文件进行处理,并且从json文件中提取我们需要的信息(诗词的标题和内容),重新组织结构,写入到一个新文件中;该函数还会根据一个简单的策略划分出训练集测试集(训练集用来训练我们的模型,测试集用来在训练过程中测试模型的性能)。整体代码如下

def process_json(file):if not file.endswith('.json'):returnwith open(file, 'r') as f:json_content = f.read()array = json.loads(json_content)if type(array) != list:returnif len(array) > 100:train_array = array[:-1]test_array = array[-1:]else:train_array = arraytest_array = Nonefor item in train_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_train_file)if test_array is not None:for item in test_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_test_file)

在代码中,首先会打开该json文件,并读取json文件中的内容;读到内容后,通过json.loads()函数将它解码成在python中可以识别的数据结构。
接下来,我们根据该分类下诗词的数据决定是否要划分出测试集,策略很简单,如果个数大于100,我们就把最后一个作为测试集的一部分,当然这个策略可以根据你的需求进行调整。
最后,我们从json中拿到titleparagraphs属性通过一个write_file()函数写到我们的新文件中。

write_file()函数的实现也很简单,作用就是拿到titleparagraphs,组织好结构写入到一个新文件中;我们预处理后的文件不会像原数据集那样提供多个文件,而是全部写到同一个文件中,所以,此时就得考虑一个问题:所有的诗词在一个文件中,怎么标识出一首诗结束了呢?办法很简单,我们在没首诗结束的时候添加一个<|endoftext|>特殊标识,该标识很重要,因为在后面我们训练模型的时候,该标识也会根据此标识学习一首诗到哪结束了(不需要结束,咱们模型就无止境的输出了)。

def write_file(item, dst_file):global error_counttitle = item['title']paragraphs = item['paragraphs']content = f'\n{title}'for p in paragraphs:content = f'{content}\n{p}'content = converter.convert(content)if '𫗋' in content:print(f'{content}----')error_count += 1returncontent = content + '<|endoftext|>'dst_file.write(content)

上面代码中,处理前面我们介绍的部分,存在两个特殊的地方

...
content = converter.convert(content)
...
if '𫗋' in content

第一个的作用是将繁体中文转换成简体字,因为原数据集中存在大量的繁体字,显然,我们不想让咱们的模型生成的诗词是繁体字形式,所以这里我选择将繁体字转换成简体字,这里借助了一个python的转换库opencc实现,大家可以通过pip3 install opencc-python-reimplemented进行安装,该库的使用方法如下

import opencc
# 繁转简
converter = opencc.OpenCC('t2s')
content = converter.convert(content)

第二个特殊的地方就是我们代码中有一个𫗋,这是因为,通过上述代码转换成简体字的时候会有一些字转换错误,所以我们这里直接将存在转换错误情况的诗过滤掉,当然,这种情况不会很多,大概几十首诗词,对于咱们几十万首诗词的数据集来说都是毛毛雨。

好了,上面就是咱们数据预处理的全部过程,最终你会得到一个如下结构的train.txttest.txt分别代表咱们前面提到过的训练集测试集
预处理后的数据集
最后,我把全部代码整理出来,方便大家可以复制到本地直接运行

import os, json
import openccbase_dir = 'chinese-poetry-master/'
classes = ['五代诗词', '元曲', '全唐诗', '四书五经', '宋词', '幽梦影', '御定全唐詩', '曹操诗集', '楚辞', '水墨唐诗','纳兰性德', '蒙学', '论语', '诗经']dst_train_file = open('./train.txt', 'w')
dst_test_file = open('./test.txt', 'w')converter = opencc.OpenCC('t2s')
error_count = 0def write_file(item, dst_file):global error_counttitle = item['title']paragraphs = item['paragraphs']content = f'\n{title}'for p in paragraphs:content = f'{content}\n{p}'content = converter.convert(content)if '𫗋' in content:print(f'{content}----')error_count += 1returncontent = content + '<|endoftext|>'dst_file.write(content)def process_json(file):if not file.endswith('.json'):returnwith open(file, 'r') as f:json_content = f.read()array = json.loads(json_content)if type(array) != list:returnif len(array) > 100:train_array = array[:-1]test_array = array[-1:]else:train_array = arraytest_array = Nonefor item in train_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_train_file)if test_array is not None:for item in test_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_test_file)for cls in classes:dir = base_dir + clsfiles = os.listdir(dir)for f in files:f = f'{dir}/{f}'if os.path.isdir(f):if 'error' in f:continuefor ff in os.listdir(f):process_json(f'{f}/{ff}')else:process_json(f)dst_train_file.close()
dst_test_file.close()dst_train_file = open('./train.txt', 'r')
dst_test_file = open('./test.txt', 'r')train_count = 0
test_count = 0for line in dst_train_file:if '<|endoftext|>' in line:train_count += 1for line in dst_test_file:if '<|endoftext|>' in line:test_count += 1print(f'train_count: {train_count}, test_count: {test_count}, error_count: {error_count}')

下一篇,我们将对pytorch框架做一个简单的入门介绍

相关文章:

从零实现诗词GPT大模型:数据集介绍和预处理

专栏规划: https://qibin.blog.csdn.net/article/details/137728228 本章将介绍该系列文章中使用的数据集&#xff0c;并且编写预处理代码&#xff0c;处理成咱们需要的格式。 一、数据集介绍 咱们使用的数据集名称是chinese-poetry&#xff0c;是一个在github上开源的中文诗…...

45.HarmonyOS鸿蒙系统 App(ArkUI)创建列表(List)

列表是一种复杂的容器&#xff0c;当列表项达到一定数量&#xff0c;内容超过屏幕大小时&#xff0c;可以自动提供滚动功能。它适合用于呈现同类数据类型或数据类型集&#xff0c;例如图片和文本。在列表中显示数据集合是许多应用程序中的常见要求&#xff08;如通讯录、音乐列…...

推荐算法之协同过滤

算法原理 透过百科&#xff0c;我们了解到协同过滤推荐&#xff08;Collaborative Filtering recommendation&#xff09;是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同&#xff0c;协同过滤算法结合用户行为分析用户…...

Kotlin 面试题

lifecycleScope.launchWhenResumed launchWhenResumed是一个扩展函数,它是LifecycleCoroutineScope的一部分,并且它是在Android的Lifecycle库中引入的。 这个函数的主要目的是在Lifecycle的对应组件(通常是Activity或Fragment)处于“resumed”状态时启动协程。 public fun …...

TCM(Tightly Coupled Memory)紧密耦合存储器简介

在ARM Cortex处理器中&#xff0c;TCM通常指的是紧密耦合存储器&#xff08;Tightly Coupled Memory&#xff09;。TCM是一种位于处理器核心旁边的高速存储器&#xff0c;它的设计目的是为了提供低延迟和高带宽的内存访问性能。 TCM的特点是它与处理器内核紧密耦合&#xff0c;…...

《自动机理论、语言和计算导论》阅读笔记:p172-p224

《自动机理论、语言和计算导论》学习第 8 天&#xff0c;p172-p224总结&#xff0c;总计 53 页。 一、技术总结 1.Context-Free Grammar(CFG) 2.parse tree (1)定义 p183&#xff0c;But perhaps more importantly, the tree, known as a “parse tree”, when used in a …...

typescript playwright 笔记

录制调式 命令 npx playwright codegen url npx playwright codegen https://www.baidu.com/typescript 中 format 和 split 的使用 import * as util from util;const str1 hellow %s; const format util.format; const str2 format(str1, word);// 提取taskId const str3…...

从零实现诗词GPT大模型:了解Transformer架构

专栏规划: https://qibin.blog.csdn.net/article/details/137728228 这篇文档我们开始对GPT的核心组件Transformer进行一个详细的讲解, 加急编写中…...

温故知新之-TCP Keepalive机制及长短连接

[学习记录] 前言 TCP连接一旦建立&#xff0c;只要连接双方不主动 close &#xff0c;连接就会一直保持。但建立连接的双方并不是一直都存在数据交互&#xff0c;所以在实际使用中会存在两种情况&#xff1a;一种是每次使用完&#xff0c;主动close&#xff0c;即短连接&…...

架构师系列-搜索引擎ElasticSearch(七)- 集群管理之分片

集群健康检查 Elasticsearch 的集群监控信息中包含了许多的统计数据&#xff0c;其中最为重要的一项就是集群健康&#xff0c;它在 status字段中展示为 green&#xff08;所有主分片和副本分片都正常&#xff09;、yellow&#xff08;所有数据可用&#xff0c;有些副本分片尚未…...

基于Spring Boot实现的图书个性化推荐系统

基于Spring Boot实现的图书个性化推荐系统 开发语言&#xff1a;Java语言 数据库&#xff1a;MySQL工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统实现 前台首页功能模块 学生注册 登录 图书信息 个人信息 管理员功能模块 学生管理界面图 图书分类管理界面图 图书信息管…...

安全加速SCDN带的态势感知能为网站安全带来哪些帮助

随着安全加速SCDN被越来越多的用户使用&#xff0c;很多用户都不知道安全加速SCDN的态势感知是用于做什么的&#xff0c;德迅云安全今天就带大家来了解下什么是态势感知&#xff0c;态势感知顾名思义就是对未发生的事件进行预知&#xff0c;并提前进行防范措施的布置&#xff0…...

java面向对象.day21(继承02--super)

说明 super父 this当前 使用super时&#xff0c;首先要继承父类&#xff0c;其次是在子类里面才能使用super。 继承父类后&#xff0c;运行子类时会同时调用父类的构造方法&#xff0c;如果要显性调用父类的构造方法必须在子类的第一行调用。 单使用super()表示调用父类构造…...

【数据结构】4.List的介绍

目录 1.什么是List 2.常见接口介绍 3.List的使用 1.什么是List 在集合框架中&#xff0c;List是一个接口&#xff0c;继承自Collection。 Collection也是一个接口&#xff0c;该接口中规范了后序容器中常用的一些方法&#xff0c;具体如下&#xff1a; Iterable也是一个接口…...

acwing算法提高之图论--最近公共祖先

目录 1 介绍2 训练 1 介绍 本博客用来记录"对于有根图中&#xff0c;求最近公共祖先"的题目。 求解方法&#xff1a; 向上标记法。每次求两个结点的最近公共祖先的时间复杂度是O(N)。由于时间复杂度较高&#xff0c;通常不用。倍增法。 倍增法重要思路&#xff1…...

C语言 函数——断言与防御式编程

目录 如何确定假设的真假&#xff1f; 断言 防御式编程&#xff08;Defensive programming&#xff09; 如何确定假设的真假&#xff1f; 程序中的假设 *某个特定点的某个表达式的值一定为真 *某个特定点的某个表达式的值一定位于某个区间等 问题&#xff1a;如何确定这些…...

【opencv】示例-travelsalesman.cpp 使用模拟退火算法求解旅行商问题

// 载入 OpenCV 的核心头文件 #include <opencv2/core.hpp> // 载入 OpenCV 的图像处理头文件 #include <opencv2/imgproc.hpp> // 载入 OpenCV 的高层GUI(图形用户界面)头文件 #include <opencv2/highgui.hpp> // 载入 OpenCV 的机器学习模块头文件 #includ…...

【linux深入剖析】深入理解软硬链接 | 动静态库的制作以及使用

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 1.理解软硬链接1.1 操作观…...

xss常用标签和触发事件

无过滤情况 <script> <scirpt>alert("xss");</script> <img> 图片加载错误时触发 <img src"x" οnerrοralert(1)> <img src"1" οnerrοreval("alert(xss)")> 鼠标指针移动到元素时触发 <im…...

WPF中Binding的原理和应用

WPF中Binding的原理和应用 在WPF中&#xff0c;Binding机制是实现数据与界面的连接和同步的重要工具。了解Binding的原理和应用&#xff0c;对于开发人员来说是非常重要的。本文将详细介绍WPF中Binding的原理和应用&#xff0c;帮助读者更好地理解和运用这一强大的机制。 Bin…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...