从零实现诗词GPT大模型:数据集介绍和预处理
专栏规划: https://qibin.blog.csdn.net/article/details/137728228
本章将介绍该系列文章中使用的数据集,并且编写预处理代码,处理成咱们需要的格式。
一、数据集介绍
咱们使用的数据集名称是chinese-poetry
,是一个在github上开源的中文诗词数据集,根据仓库中readme.md中的介绍,该数据集是最全的中华古典文集数据库,包含 5.5 万首唐诗、26 万首宋诗、2.1 万首宋词和其他古典文集。诗人包括唐宋两朝近 1.4 万古诗人,和两宋时期 1.5 千古词人。
数据集的下载地址:https://github.com/chinese-poetry/chinese-poetry?tab=readme-ov-file,大家可以点击Code
按钮,选择Download ZIP
将该数据集下载到本地,如下图:
当然,作者收集数据也不易,大家可以顺手点一下star鼓励一下作者,如图:
如果你按照上面的步骤,把数据集下载到你本地了,解压后你可以看到如下图所示的目录结构
作者按照不同诗词类型进行了分类,并且在每个分类下提供了1个到多个的json文件,json文件里按照结构化数据组织了每一个诗词的信息,如下图
二、数据集预处理
上面咱们详细介绍了chinese-poetry数据集的下载方式和作者组织的结构,下面我们将提取每个诗词的标题和内容作为我们需要的部分,并聚合到一个文件中,以方便我们后续训练模型使用。
首先,我们需要把作者提供的诗词类目整理到一个数组中,方便我们后续进行目录的变量
classes = ['五代诗词', '元曲', '全唐诗', '四书五经', '宋词', '幽梦影', '御定全唐詩', '曹操诗集', '楚辞', '水墨唐诗','纳兰性德', '蒙学', '论语', '诗经']
然后,我们可以遍历该数组,拼接一个目录,遍历目录中中的文件,再进行文件处理
for cls in classes:dir = base_dir + clsfiles = os.listdir(dir)for f in files:f = f'{dir}/{f}'if os.path.isdir(f):if 'error' in f:continuefor ff in os.listdir(f):process_json(f'{f}/{ff}')else:process_json(f)
上面代码中,我们遍历每个类别的目录后,会列出该类别中所有的文件,文件如果是一个目录,则继续遍历这个目录,因为作者提供的目录结构会存在二级目录的情况。
最后,拿到每个json文件后,会调用process_json()
函数处理对应的json文件。下面我们开始介绍process_json()
函数。
process_json()
函数会对上面代码中拿到的每个json文件进行处理,并且从json文件中提取我们需要的信息(诗词的标题和内容),重新组织结构,写入到一个新文件中;该函数还会根据一个简单的策略划分出训练集
和测试集
(训练集用来训练我们的模型,测试集用来在训练过程中测试模型的性能)。整体代码如下
def process_json(file):if not file.endswith('.json'):returnwith open(file, 'r') as f:json_content = f.read()array = json.loads(json_content)if type(array) != list:returnif len(array) > 100:train_array = array[:-1]test_array = array[-1:]else:train_array = arraytest_array = Nonefor item in train_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_train_file)if test_array is not None:for item in test_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_test_file)
在代码中,首先会打开该json文件,并读取json文件中的内容;读到内容后,通过json.loads()
函数将它解码成在python中可以识别的数据结构。
接下来,我们根据该分类下诗词的数据决定是否要划分出测试集,策略很简单,如果个数大于100,我们就把最后一个作为测试集的一部分,当然这个策略可以根据你的需求进行调整。
最后,我们从json中拿到title
和paragraphs
属性通过一个write_file()
函数写到我们的新文件中。
write_file()
函数的实现也很简单,作用就是拿到title
和paragraphs
,组织好结构写入到一个新文件中;我们预处理后的文件不会像原数据集那样提供多个文件,而是全部写到同一个文件中,所以,此时就得考虑一个问题:所有的诗词在一个文件中,怎么标识出一首诗结束了呢?办法很简单,我们在没首诗结束的时候添加一个<|endoftext|>
特殊标识,该标识很重要,因为在后面我们训练模型的时候,该标识也会根据此标识学习一首诗到哪结束了(不需要结束,咱们模型就无止境的输出了)。
def write_file(item, dst_file):global error_counttitle = item['title']paragraphs = item['paragraphs']content = f'\n{title}'for p in paragraphs:content = f'{content}\n{p}'content = converter.convert(content)if '𫗋' in content:print(f'{content}----')error_count += 1returncontent = content + '<|endoftext|>'dst_file.write(content)
上面代码中,处理前面我们介绍的部分,存在两个特殊的地方
...
content = converter.convert(content)
...
if '𫗋' in content
第一个的作用是将繁体中文转换成简体字,因为原数据集中存在大量的繁体字,显然,我们不想让咱们的模型生成的诗词是繁体字形式,所以这里我选择将繁体字转换成简体字,这里借助了一个python的转换库opencc
实现,大家可以通过pip3 install opencc-python-reimplemented
进行安装,该库的使用方法如下
import opencc
# 繁转简
converter = opencc.OpenCC('t2s')
content = converter.convert(content)
第二个特殊的地方就是我们代码中有一个𫗋
,这是因为,通过上述代码转换成简体字的时候会有一些字转换错误,所以我们这里直接将存在转换错误情况的诗过滤掉,当然,这种情况不会很多,大概几十首诗词,对于咱们几十万首诗词的数据集来说都是毛毛雨。
好了,上面就是咱们数据预处理的全部过程,最终你会得到一个如下结构的train.txt
和test.txt
分别代表咱们前面提到过的训练集
和测试集
。
最后,我把全部代码整理出来,方便大家可以复制到本地直接运行
import os, json
import openccbase_dir = 'chinese-poetry-master/'
classes = ['五代诗词', '元曲', '全唐诗', '四书五经', '宋词', '幽梦影', '御定全唐詩', '曹操诗集', '楚辞', '水墨唐诗','纳兰性德', '蒙学', '论语', '诗经']dst_train_file = open('./train.txt', 'w')
dst_test_file = open('./test.txt', 'w')converter = opencc.OpenCC('t2s')
error_count = 0def write_file(item, dst_file):global error_counttitle = item['title']paragraphs = item['paragraphs']content = f'\n{title}'for p in paragraphs:content = f'{content}\n{p}'content = converter.convert(content)if '𫗋' in content:print(f'{content}----')error_count += 1returncontent = content + '<|endoftext|>'dst_file.write(content)def process_json(file):if not file.endswith('.json'):returnwith open(file, 'r') as f:json_content = f.read()array = json.loads(json_content)if type(array) != list:returnif len(array) > 100:train_array = array[:-1]test_array = array[-1:]else:train_array = arraytest_array = Nonefor item in train_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_train_file)if test_array is not None:for item in test_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_test_file)for cls in classes:dir = base_dir + clsfiles = os.listdir(dir)for f in files:f = f'{dir}/{f}'if os.path.isdir(f):if 'error' in f:continuefor ff in os.listdir(f):process_json(f'{f}/{ff}')else:process_json(f)dst_train_file.close()
dst_test_file.close()dst_train_file = open('./train.txt', 'r')
dst_test_file = open('./test.txt', 'r')train_count = 0
test_count = 0for line in dst_train_file:if '<|endoftext|>' in line:train_count += 1for line in dst_test_file:if '<|endoftext|>' in line:test_count += 1print(f'train_count: {train_count}, test_count: {test_count}, error_count: {error_count}')
下一篇,我们将对pytorch框架做一个简单的入门介绍
相关文章:

从零实现诗词GPT大模型:数据集介绍和预处理
专栏规划: https://qibin.blog.csdn.net/article/details/137728228 本章将介绍该系列文章中使用的数据集,并且编写预处理代码,处理成咱们需要的格式。 一、数据集介绍 咱们使用的数据集名称是chinese-poetry,是一个在github上开源的中文诗…...

45.HarmonyOS鸿蒙系统 App(ArkUI)创建列表(List)
列表是一种复杂的容器,当列表项达到一定数量,内容超过屏幕大小时,可以自动提供滚动功能。它适合用于呈现同类数据类型或数据类型集,例如图片和文本。在列表中显示数据集合是许多应用程序中的常见要求(如通讯录、音乐列…...
推荐算法之协同过滤
算法原理 透过百科,我们了解到协同过滤推荐(Collaborative Filtering recommendation)是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤算法结合用户行为分析用户…...
Kotlin 面试题
lifecycleScope.launchWhenResumed launchWhenResumed是一个扩展函数,它是LifecycleCoroutineScope的一部分,并且它是在Android的Lifecycle库中引入的。 这个函数的主要目的是在Lifecycle的对应组件(通常是Activity或Fragment)处于“resumed”状态时启动协程。 public fun …...

TCM(Tightly Coupled Memory)紧密耦合存储器简介
在ARM Cortex处理器中,TCM通常指的是紧密耦合存储器(Tightly Coupled Memory)。TCM是一种位于处理器核心旁边的高速存储器,它的设计目的是为了提供低延迟和高带宽的内存访问性能。 TCM的特点是它与处理器内核紧密耦合,…...

《自动机理论、语言和计算导论》阅读笔记:p172-p224
《自动机理论、语言和计算导论》学习第 8 天,p172-p224总结,总计 53 页。 一、技术总结 1.Context-Free Grammar(CFG) 2.parse tree (1)定义 p183,But perhaps more importantly, the tree, known as a “parse tree”, when used in a …...
typescript playwright 笔记
录制调式 命令 npx playwright codegen url npx playwright codegen https://www.baidu.com/typescript 中 format 和 split 的使用 import * as util from util;const str1 hellow %s; const format util.format; const str2 format(str1, word);// 提取taskId const str3…...
从零实现诗词GPT大模型:了解Transformer架构
专栏规划: https://qibin.blog.csdn.net/article/details/137728228 这篇文档我们开始对GPT的核心组件Transformer进行一个详细的讲解, 加急编写中…...

温故知新之-TCP Keepalive机制及长短连接
[学习记录] 前言 TCP连接一旦建立,只要连接双方不主动 close ,连接就会一直保持。但建立连接的双方并不是一直都存在数据交互,所以在实际使用中会存在两种情况:一种是每次使用完,主动close,即短连接&…...

架构师系列-搜索引擎ElasticSearch(七)- 集群管理之分片
集群健康检查 Elasticsearch 的集群监控信息中包含了许多的统计数据,其中最为重要的一项就是集群健康,它在 status字段中展示为 green(所有主分片和副本分片都正常)、yellow(所有数据可用,有些副本分片尚未…...

基于Spring Boot实现的图书个性化推荐系统
基于Spring Boot实现的图书个性化推荐系统 开发语言:Java语言 数据库:MySQL工具:IDEA/Ecilpse、Navicat、Maven 系统实现 前台首页功能模块 学生注册 登录 图书信息 个人信息 管理员功能模块 学生管理界面图 图书分类管理界面图 图书信息管…...

安全加速SCDN带的态势感知能为网站安全带来哪些帮助
随着安全加速SCDN被越来越多的用户使用,很多用户都不知道安全加速SCDN的态势感知是用于做什么的,德迅云安全今天就带大家来了解下什么是态势感知,态势感知顾名思义就是对未发生的事件进行预知,并提前进行防范措施的布置࿰…...
java面向对象.day21(继承02--super)
说明 super父 this当前 使用super时,首先要继承父类,其次是在子类里面才能使用super。 继承父类后,运行子类时会同时调用父类的构造方法,如果要显性调用父类的构造方法必须在子类的第一行调用。 单使用super()表示调用父类构造…...

【数据结构】4.List的介绍
目录 1.什么是List 2.常见接口介绍 3.List的使用 1.什么是List 在集合框架中,List是一个接口,继承自Collection。 Collection也是一个接口,该接口中规范了后序容器中常用的一些方法,具体如下: Iterable也是一个接口…...
acwing算法提高之图论--最近公共祖先
目录 1 介绍2 训练 1 介绍 本博客用来记录"对于有根图中,求最近公共祖先"的题目。 求解方法: 向上标记法。每次求两个结点的最近公共祖先的时间复杂度是O(N)。由于时间复杂度较高,通常不用。倍增法。 倍增法重要思路࿱…...

C语言 函数——断言与防御式编程
目录 如何确定假设的真假? 断言 防御式编程(Defensive programming) 如何确定假设的真假? 程序中的假设 *某个特定点的某个表达式的值一定为真 *某个特定点的某个表达式的值一定位于某个区间等 问题:如何确定这些…...

【opencv】示例-travelsalesman.cpp 使用模拟退火算法求解旅行商问题
// 载入 OpenCV 的核心头文件 #include <opencv2/core.hpp> // 载入 OpenCV 的图像处理头文件 #include <opencv2/imgproc.hpp> // 载入 OpenCV 的高层GUI(图形用户界面)头文件 #include <opencv2/highgui.hpp> // 载入 OpenCV 的机器学习模块头文件 #includ…...

【linux深入剖析】深入理解软硬链接 | 动静态库的制作以及使用
🍁你好,我是 RO-BERRY 📗 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 🎄感谢你的陪伴与支持 ,故事既有了开头,就要画上一个完美的句号,让我们一起加油 目录 1.理解软硬链接1.1 操作观…...
xss常用标签和触发事件
无过滤情况 <script> <scirpt>alert("xss");</script> <img> 图片加载错误时触发 <img src"x" οnerrοralert(1)> <img src"1" οnerrοreval("alert(xss)")> 鼠标指针移动到元素时触发 <im…...
WPF中Binding的原理和应用
WPF中Binding的原理和应用 在WPF中,Binding机制是实现数据与界面的连接和同步的重要工具。了解Binding的原理和应用,对于开发人员来说是非常重要的。本文将详细介绍WPF中Binding的原理和应用,帮助读者更好地理解和运用这一强大的机制。 Bin…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...