【译】微调与人工引导: 语言模型调整中的 SFT 和 RLHF
原文地址:Fine-Tuning vs. Human Guidance: SFT and RLHF in Language Model Tuning
本文主要对监督微调(SFT, Supervised Fine Tuning )和人类反馈强化学习(RLHF, Reinforcement Learning from Human Feedback)进行简要比较。
方法
- RLHF 采用迭代方法:利用人类对语言模型 (LLM) 输出的反馈来训练奖励模型。然后利用该模型通过强化学习来提高 LLM 的性能。然而,这种方法非常复杂,因为它需要创建和训练一个独特的奖励模型。这项任务往往极具挑战性,因为它涉及管理人类的各种偏好并解决偏差问题。
- SFT 涉及直接训练,即直接在精心策划的数据集上完善语言模型 (LLM),该数据集包含描述目标任务或领域的注释示例。这种方法比较简单,只需要标注数据和传统的训练方法。
复杂性
- 由于训练奖赏模型并与之交互需要大量资源,因此 RLHF 的计算成本往往很高。此外,还存在不稳定的风险,因为 RL 中的优化对奖励模型的不准确性很敏感,可能会导致意想不到的行为。
- 另一方面,SFT 的计算成本更低,因为与 RLHF 相比,它的训练速度通常更快。此外,它还更稳定,因为它不容易出现意外行为,因为它直接在标记数据上进行训练。
结果
- 当奖励模型真正代表人的价值观时,RLHF 有可能产生更准确、更理想的输出,从而更符合人的偏好。不过,这种方法往往会限制输出的多样性,导致创造力和惊喜减少,因为语言模型会努力使奖励信号最大化。
- 另一方面,虽然与 RLHF 相比,SFT 在某些任务上的性能可能较低,尤其是在复杂的任务上,但它通常能保持较高的输出多样性。这种多样性源于语言模型固有的灵活性,使其能够产生更广泛的创造性反应。
需要考虑的其他因素
- 数据质量是这两种方法的基础,但 RLHF 对奖励模型中存在的偏差和不准确性尤为敏感。确保高质量、多样化的标记数据对两种方法的成功都至关重要,但对 RLHF 而言尤为关键,因为它依赖于准确的人类反馈来塑造奖励模型和后续学习过程。
- 在要求严格符合人类价值观的特定应用中,例如制作法律文件,RLHF 可能是首选方法,因为它能够根据反馈驱动的奖励模型精确地遵循这些价值观。相反,对于优先考虑创造性和多样化输出的任务,如诗歌创作或其他开放式的工作,SFT 可能更适合,因为它保留了语言模型固有的灵活性,允许产生更多样、更富有想象力的结果。
- 最近的研究趋势表明,有了高质量的数据,监督微调(SFT)在某些情况下有可能取得与人类反馈强化学习(RLHF)相当甚至更优的结果。这一发现将 SFT 定位为这些特定情况下更直接、更高效的替代方案,展示了其在特定条件下,在配备高质量数据的情况下与 RLHF 相媲美或超越 RLHF 的能力。
在 RLHF 和 SFT 之间做出选择取决于各种因素,如任务的性质、可用资源和预期结果。每种方法都有自己的优缺点,因此必须了解它们之间的差异,以便有效地微调语言模型(LLM)。评估具体要求和每种方法的优缺点,有助于根据手头的任务做出明智的决定。
我相信这篇简明扼要的解释已经阐明了 RLHF 和 SFT 之间的区别,并使您能够做出正确的选择。
相关文章:
【译】微调与人工引导: 语言模型调整中的 SFT 和 RLHF
原文地址:Fine-Tuning vs. Human Guidance: SFT and RLHF in Language Model Tuning 本文主要对监督微调(SFT, Supervised Fine Tuning )和人类反馈强化学习(RLHF, Reinforcement Learning from Human Feedback)进行简…...
kylin java.io.IOException: error=13, Permission denied
linux centos7.8 error13, Permission denied_linux open error13-CSDN博客 chmod -R 777 /home/zengwenfeng/kkFileView-4.2.1 2024-04-15 13:15:17.416 WARN 3400 --- [er-offprocmng-1] o.j.l.office.LocalOfficeProcessManager : An I/O error prevents us to determine…...
前端面试01总结
1.Js 中!x为true 时,x可能为哪些值 答: 1.false:布尔值false 2.0或-0:数字零 3.""或’或 (空字符串):长度为0的字符串 4.null:表示没有任何值的特殊值 5.undefined:变量未定义时的默认…...
算法--目录
algorithm: 十种排序算法 二分法-各种应用 algorithm: 拓扑排序 算法中的背包问题 最长子序列问题 前缀和-解题集合 差分数组-解题...
ArcGIS Pro 3D建模简明教程
在本文中,我讲述了我最近一直在探索的在 ArcGIS Pro 中设计 3D 模型的过程。 我的目标是尽可能避免与其他软件交互(即使是专门用于 3D 建模的软件),并利用 Pro 可以提供的可能性。 这个短暂的旅程分为三个不同的阶段:…...
24届数字IC设计/验证秋招总结贴——先看这个
文章目录 前言一、经验篇二、知识学习篇三、笔试篇3.1 各大公司笔试真题3.2 华为机试——数字芯片笔试题汇总 四、面试篇4.1 时间节点4.2 提前批4.3 正式批 前言 为方便快速进行查找该专栏的内容,将所有内容链接均放在此篇博客中 整理不易,欢迎订阅~~ …...
带洞平面三角分割结果的逆向算法
先标不重复点,按最近逐个插入。 只说原理。 不带洞的 1 2 4 2 3 4 两个三角形 结果 1 2 3 4 无重复 无洞 1 2 6 1 2 3 6 1 2 3 7 6 1 2 3 4 7 6 1 2 3 4 5 7 6 1 2 3 4 1 5 7 6 1 2 3 4 1 6 5 7 6 最终结果 1 2 3 4 1 6 5 7 6 按重复分割 1 2 3…...
MGRE-OSPF接口网络类型实验
OSPF接口网络类型实验 一,实验拓扑 初始拓扑: 最终拓扑: 二,实验要求及分析 要求: 1,R6为ISP只能配置IP地址,R1-R5的环回为私有网段 2,R1/R4/R5为全连的MGRE结构,R…...
ChatGPT科研利器详解:写作论文轻松如玩游戏
ChatGPT无限次数:点击直达 ChatGPT科研利器详解:写作论文轻松如玩游戏 引言 在当今科技日新月异的时代,人工智能技术的应用越来越广泛,其中自然语言处理领域的发展尤为迅猛。ChatGPT作为一款先进的文本生成模型,为科研工作者提供…...
vue3从精通到入门23:定义全局变量
在vue2中,我们知道vue2.x是使用Vue.prototype.$xxxxxxx来定义全局变量, 比如定义一个全局的工具函数。 // 定义 ... Vue.prototype.$utilsutils;// 使用 this.$utils() ... 在vue3中我们无法使用this,提供了globalProperties; …...
反爬虫之代理IP封禁-协采云IP池
反爬虫之代理IP封禁-协采云IP池 1、目标网址2、IP封禁4033、协采云IP池 1、目标网址 aHR0cDovL3d3dy5jY2dwLXRpYW5qaW4uZ292LmNuLw 2、IP封禁403 这个网站对IP的要求很高,短时间请求十几次就会遭关进小黑屋。如下图: 明显是网站进行了反爬处理&…...
ELK-Kibana 部署
目录 一、在 node1 节点上操作 1.1.安装 Kibana 1.2.设置 Kibana 的主配置文件 1.3.启动 Kibana 服务 1.4.验证 Kibana 1.5.将 Apache 服务器的日志(访问的、错误的)添加到 ES 并通过 Kibana 显示 1.6. 浏览器访问 二、部署FilebeatELK&…...
Backtrader 量化回测实践(7)——在jupyter中执行bt的samples
Backtrader 量化回测实践(7)——在jupyter中执行bt的samples Backtrader提供了大量的测试用例,在samples目录下,测试程序主要都是用argparse解析参数,但是不能在jupyter中直接执行。 找到一个解决方法,可…...
npm vs. pnpm vs. Yarn: 三者之间的区别与比较
在现代前端开发中,包管理工具是必不可少的一环。npm、pnpm和Yarn是三个常用的包管理工具,它们各有特点,适用于不同的场景。本文将深入讨论这三者的基本概念、特点、优势和劣势,并对比分析它们之间的主要区别,包括功能、…...
Learning Feature Sparse Principal Subspace 论文阅读
1 Abstract: 这篇论文提出了新的算法来解决特征稀疏约束的主成分分析问题(FSPCA),该问题同时执行特征选择和PCA。现有的FSPCA优化方法需要对数据分布做出假设,并且缺乏全局收敛性的保证。尽管一般的FSPCA问题是NP难问题ÿ…...
Hibernate入门经典与注解式开发大全
本博文主要讲解介绍Hibernate框架,ORM的概念和Hibernate入门,相信你们看了就会使用Hibernate了! 什么是Hibernate框架? Hibernate是一种ORM框架,全称为 Object_Relative DateBase-Mapping,在Java对象与关系数据库之间建…...
蓝桥杯之注意事项
1.特殊求解的地方 2.一些数学公式 比如二叉树求全深度数值那道题 3.掌握有关库函数 #include<algorithm> 包含sort()函数【排列函数】C sort()排序详解-CSDN博客,next_permutation()函数【求解全排列问题】求解数组大小sizeof(arr…...
ES6 全详解 let 、 const 、解构赋值、剩余运算符、函数默认参数、扩展运算符、箭头函数、新增方法,promise、Set、class等等
目录 ES6概念ECMAScript6简介ECMAScript 和 JavaScript 的关系ES6 与 ECMAScript 2015 的关系 1、let 、 const 、var 区别2、变量解构赋值1、数组解构赋值2、对象解构赋值3、字符串的解构赋值 3、展开剩余运算符1、**展开运算符(...)**2、**剩余运算符(...)** 4、函数的拓展函…...
c++ - 类的默认成员函数
文章目录 前言一、构造函数二、析构函数三、拷贝构造函数四、重载赋值操作符五、取地址及const取地址操作符重载 前言 默认成员函数是编译器自动生成的,也可以自己重写,自己重写之后编译器就不再生成,下面是深入了解这些成员函数。 一、构造…...
Java哈希查找(含面试大厂题和源码)
哈希查找(Hash Search)是一种基于哈希表(Hash Table)的数据查找方法。哈希表通过使用哈希函数将键(Key)映射到表中的位置来存储数据,从而实现快速的数据访问。哈希查找的效率通常取决于哈希函数…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
