Backtrader 量化回测实践(7)——在jupyter中执行bt的samples
Backtrader 量化回测实践(7)——在jupyter中执行bt的samples
Backtrader提供了大量的测试用例,在samples目录下,测试程序主要都是用argparse解析参数,但是不能在jupyter中直接执行。
找到一个解决方法,可以方便在jupyter中执行samples中的示例。
把datas目录上传到ipython的当前路径,以calmar-test.py程序为例,简单修改程序如下:
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# Copyright (C) 2015-2023 Daniel Rodriguez
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###############################################################################
from __future__ import (absolute_import, division, print_function,unicode_literals)import argparse
import datetimeimport backtrader as bt%matplotlib inlineclass St(bt.SignalStrategy):params = ()def __init__(self):ma1, ma2, = bt.ind.SMA(period=15), bt.ind.SMA(period=50)self.signal_add(bt.signal.SIGNAL_LONG, bt.ind.CrossOver(ma1, ma2))def next2(self):passdef runstrat(args=None):args = parse_args(args)cerebro = bt.Cerebro()# Data feed kwargskwargs = dict()# Parse from/to-datedtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S'for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']):if a:strpfmt = dtfmt + tmfmt * ('T' in a)kwargs[d] = datetime.datetime.strptime(a, strpfmt)# Data feeddata0 = bt.feeds.YahooFinanceCSVData(dataname=args.data0, **kwargs)cerebro.adddata(data0)# Brokercerebro.broker = bt.brokers.BackBroker(**eval('dict(' + args.broker + ')'))cerebro.addanalyzer(bt.analyzers.Calmar)# Sizercerebro.addsizer(bt.sizers.FixedSize, **eval('dict(' + args.sizer + ')'))# Strategycerebro.addstrategy(St, **eval('dict(' + args.strat + ')'))# Executest0 = cerebro.run(**eval('dict(' + args.cerebro + ')'))[0]i = 1for k, v in st0.analyzers.calmar.get_analysis().items():print(i, ': '.join((str(k), str(v))))i += 1if args.plot: # Plot if requested to#cerebro.plot(**eval('dict(' + args.plot + ')'))cerebro.plot(iplot=False)def parse_args(pargs=None):parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter,description=('Sample Skeleton'))parser.add_argument('--data0', default='./datas/orcl-1995-2014.txt',required=False, help='Data to read in')# Defaults for datesparser.add_argument('--fromdate', required=False, default='',help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')parser.add_argument('--todate', required=False, default='',help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')parser.add_argument('--cerebro', required=False, default='',metavar='kwargs', help='kwargs in key=value format')parser.add_argument('--broker', required=False, default='',metavar='kwargs', help='kwargs in key=value format')parser.add_argument('--sizer', required=False, default='',metavar='kwargs', help='kwargs in key=value format')parser.add_argument('--strat', required=False, default='',metavar='kwargs', help='kwargs in key=value format')parser.add_argument('--plot', required=False, default='',nargs='?', const='{}',metavar='kwargs', help='kwargs in key=value format')return parser.parse_args(pargs)if __name__ == '__main__':#runstrat()#runstrat('--plot'.split())runstrat('--plot --fromdate=1998-01-01 --todate=2000-01-01'.split())
修改点如下:
-
- jupyter环境:在import 后增加 %matplotlib inline
-
- 调整数据导入路径,因为在当前路径
parser.add_argument('--data0', default='./datas/orcl-1995-2014.txt',required=False, help='Data to read in')
- 3.绘图参数:
在jupyter中绘图参数
#cerebro.plot(**eval('dict(' + args.plot + ')'))
cerebro.plot(iplot=False)`
- 4.调用参数
通过split方法,带入调用参数。
#runstrat()runstrat('--plot --fromdate=1998-01-01 --todate=2000-01-01'.split())
修改以上内容后,就可以直接在jupyter中执行Backtrader的示例了。
相关文章:
Backtrader 量化回测实践(7)——在jupyter中执行bt的samples
Backtrader 量化回测实践(7)——在jupyter中执行bt的samples Backtrader提供了大量的测试用例,在samples目录下,测试程序主要都是用argparse解析参数,但是不能在jupyter中直接执行。 找到一个解决方法,可…...
npm vs. pnpm vs. Yarn: 三者之间的区别与比较
在现代前端开发中,包管理工具是必不可少的一环。npm、pnpm和Yarn是三个常用的包管理工具,它们各有特点,适用于不同的场景。本文将深入讨论这三者的基本概念、特点、优势和劣势,并对比分析它们之间的主要区别,包括功能、…...
Learning Feature Sparse Principal Subspace 论文阅读
1 Abstract: 这篇论文提出了新的算法来解决特征稀疏约束的主成分分析问题(FSPCA),该问题同时执行特征选择和PCA。现有的FSPCA优化方法需要对数据分布做出假设,并且缺乏全局收敛性的保证。尽管一般的FSPCA问题是NP难问题ÿ…...
Hibernate入门经典与注解式开发大全
本博文主要讲解介绍Hibernate框架,ORM的概念和Hibernate入门,相信你们看了就会使用Hibernate了! 什么是Hibernate框架? Hibernate是一种ORM框架,全称为 Object_Relative DateBase-Mapping,在Java对象与关系数据库之间建…...
蓝桥杯之注意事项
1.特殊求解的地方 2.一些数学公式 比如二叉树求全深度数值那道题 3.掌握有关库函数 #include<algorithm> 包含sort()函数【排列函数】C sort()排序详解-CSDN博客,next_permutation()函数【求解全排列问题】求解数组大小sizeof(arr…...
ES6 全详解 let 、 const 、解构赋值、剩余运算符、函数默认参数、扩展运算符、箭头函数、新增方法,promise、Set、class等等
目录 ES6概念ECMAScript6简介ECMAScript 和 JavaScript 的关系ES6 与 ECMAScript 2015 的关系 1、let 、 const 、var 区别2、变量解构赋值1、数组解构赋值2、对象解构赋值3、字符串的解构赋值 3、展开剩余运算符1、**展开运算符(...)**2、**剩余运算符(...)** 4、函数的拓展函…...
c++ - 类的默认成员函数
文章目录 前言一、构造函数二、析构函数三、拷贝构造函数四、重载赋值操作符五、取地址及const取地址操作符重载 前言 默认成员函数是编译器自动生成的,也可以自己重写,自己重写之后编译器就不再生成,下面是深入了解这些成员函数。 一、构造…...
Java哈希查找(含面试大厂题和源码)
哈希查找(Hash Search)是一种基于哈希表(Hash Table)的数据查找方法。哈希表通过使用哈希函数将键(Key)映射到表中的位置来存储数据,从而实现快速的数据访问。哈希查找的效率通常取决于哈希函数…...
c++中常用库函数
大小写转换 islower/isupper函数 char ch1 A; char ch2 b;//使用islower函数判断字符是否为小写字母 if(islower(ch1)){cout << ch1 << "is a lowercase letter." << end1; } else{cout << ch1 << "is not a lowercase lette…...
Scrapy框架 进阶
Scrapy框架基础Scrapy框架进阶 【五】持久化存储 命令行:json、csv等管道:什么数据类型都可以 【1】命令行简单存储 (1)语法 Json格式 scrapy crawl 自定义爬虫程序文件名 -o 文件名.jsonCSV格式 scrapy crawl 自定义爬虫程…...
ubuntu22安装snipaste
Ubuntu 22.04 一、Snipaste 介绍和下载 Snipaste 官网下载链接: Snipaste Downloads 二、安装并使用 Snipaste # 1、进入Snipaste-2.8.9-Beta-x86_64.AppImage 目录(根据自己下载目录) cd /home/jack/Downloads/softwares/AppImage# 2、Snipaste-2.8.9-…...
spring-cloud微服务openfeign
Spring Cloud openfeign对Feign进行了增强,使其支持Spring MVC注解,另外还整合了Ribbon和Nacos,从而使得Feign的使用更加方便 优势,openfeign可以做到使用HTTP请求远程服务时就像洞用本地方法一样的体验,开发者完全感…...
小程序变更主体需要多久?
小程序迁移变更主体有什么作用?小程序迁移变更主体的好处有很多哦!比如可以获得更多权限功能、公司变更或注销时可以保证账号的正常使用、收购账号后可以改变归属权或使用权等等。小程序迁移变更主体的条件有哪些?1、新主体必须是企业主体&am…...
19 Games101 - 笔记 - 相机与透镜
**19 ** 相机与透镜 目录 摘要一 照相机主要部分二 小孔成像与视场(FOV)三 曝光(Exposure)四 景深(Depth of Field)总结 摘要 虽说照相机与透镜属于相对独立的话题,但它们的确是计算机图形学当中的一部分知识。在过往的十多篇笔记中,我们学习的都是如…...
Flink入门学习 | 大数据技术
⭐简单说两句⭐ ✨ 正在努力的小新~ 💖 超级爱分享,分享各种有趣干货! 👩💻 提供:模拟面试 | 简历诊断 | 独家简历模板 🌈 感谢关注,关注了你就是我的超级粉丝啦! &…...
Arthas实战教程:定位Java应用CPU过高与线程死锁
引言 在Java应用开发中,我们可能会遇到CPU占用过高和线程死锁的问题。本文将介绍如何使用Arthas工具快速定位这些问题。 准备工作 首先,我们创建一个简单的Java应用,模拟CPU过高和线程死锁的情况。在这个示例中,我们将编写一个…...
HTML制作跳动的心形网页
作为一名码农 也有自己浪漫的小心思嗷~ 该网页 代码整体难度不大 操作性较强 祝大家都幸福hhhhh 效果成品: 全部代码: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML><HEAD><TITLE> 一个…...
如何在Odoo 17 销售应用中使用产品目录添加产品
Odoo,作为一个知名的开源ERP系统,发布了其第17版,新增了多项功能和特性。Odoo 17包中的一些操作简化了,生产力提高了,用户体验也有了显著改善。为了为其用户提供新的和改进的功能,Odoo不断进行改进和增加新…...
为什么pdf拆分出几页之后大小几乎没有变化
PDF 文件的大小在拆分出几页之后几乎没有变化可能有几个原因: 图像压缩: 如果 PDF 文件中包含图像,而这些图像已经被压缩过,拆分后的页面依然会保留这些压缩设置,因此文件大小可能不会显著变化。 文本和矢量图形: PDF 文件中的文…...
如何在 VM 虚拟机中安装 OpenEuler 操作系统保姆级教程(附链接)
一、VMware Workstation 虚拟机 若没有安装虚拟机的可以参考下篇文章进行安装: 博客链接https://eclecticism.blog.csdn.net/article/details/135713915 二、OpenEuler 镜像 点击链接前往官网 官网 选择第一个即可 三、安装 OpenEuler 打开虚拟机安装 Ctrl …...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
