当前位置: 首页 > news >正文

AI系列:大语言模型的function calling

目录

  • 大语言模型(LLM) 的function calling
  • 实验:OpenAI之function calling
    • 序列图:function calling如何工作
    • 详情: 对话内容
    • 参考代码
  • 后续: 使用LangChain实现function calling
  • 参考

大语言模型(LLM) 的function calling

大语言模型(LLM)可以使用自然语言与人类对话。但在使用它完成某项复杂工作时,很多时候必须依赖其他外部工具,这包括但不限于:

  • 训练的知识库和提示词以外的知识。包括某些垂直细分领域以及非公开的数据。
  • 计算任务。相信我,即使它给出的结果看起来很像样,你也不能相信它在计算方面的能力;它无法保证100%的准确性。
  • 实时数据。需要外部工具提供。

能识别需要使用的外部工具,能根据其结果数据完成对话的功能叫做function calling。

实验:OpenAI之function calling

OpenAI的GPT作为LLM的代表作,我们将给它提出如下问题:

问题:一共有3个人,每个人有15个苹果,10个鸭梨,一共有多少苹果?
注: 这个简单的逻辑和算数题只作为实验用途;实际应用中可以扩展到复杂的计算。

我们将给GPT提供两个function/tool。一个是乘法,一个是加法。
注: 其中加法用来迷惑GPT。

我们期待的结果:GPT能判断使用乘法及其参数,并使用乘法function calling给出的结果数据,最终返回正确答案:
三个人一共有45个苹果。

序列图:function calling如何工作

我们的代码和GPT将怎样完成这个过程呢?这里将整个过程描绘在下面的时序图中:

代码 大模型LLM 1. 调用对话接口,告诉LLM提示词+可使用的functions/tools定义 2. 需要调用的functions/tools及调用参数 3. 将步骤2中LLM的回复加入对话 4. 循环执行function calling,并将结果加入对话 5. 调用对话接口,需要以上所有对话信息 6. 最终回答 alt [分支:需要function calling] [分支:不需要function calling] 代码 大模型LLM

详情: 对话内容

以下内容是真实的对话历史,程序和GPT配合按照我们的预想完成了整个过程,并最终给出了正确答案。
注:以下用到的UserMessage, AIMessage, FunctionMessage都是LangChain中的概念;它比较贴切的抽象了不同role的对话项。


步骤1中的对话项:UserMessage | 向GPT输入对话提示词。

#提示词
{"role": "user","content": "一共有3个人,每个人有15个苹果,10个鸭梨,一共有多少苹果?"
}

另外,在调用GPT接口时,定义了2个function type tools:乘法multiply和加法add。内容参见下一部分的代码部分。


步骤2中的对话项:AIMessage | GPT返回需要调用的functions/tools及其调用参数。

#这里GPT没有给出最终答案,它识别出了需要调用乘法multiply,参数一first_int为3个人,参数二second_int为15个苹果/每人。
{"content": null,"role": "assistant","function_call": null,"tool_calls": [{"id": "call_ZMbo4SiA2iaZUSLJMyX8ZzkP","function": {"arguments": "{\"first_int\":3,\"second_int\":15}","name": "multiply"},"type": "function"}]
}

步骤4中的对话项:FunctionMessage |function calling的调用结果数据。
tool_call_id对应步骤2中的tool_calls元素中的id。content为程序调用function/tool后的结果数据。

#将function calling的结果为3*15=45,设定role为tool,将其加入对话中。
{"tool_call_id": "call_ZMbo4SiA2iaZUSLJMyX8ZzkP","role": "tool","name": "multiply","content": "45"
}

步骤6中的对话项:AIMessage | 程序将以上所有对话项发送给GPT,GPT用自然语言返回最终结论。

#最终结果为:三个人一共有45个苹果。
{"content": "三个人一共有45个苹果。","role": "assistant","function_call": null,"tool_calls": null
}

参考代码

function calling的实现代码如下:

import json# 初始化环境和OpenAI
from openai import OpenAI
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
client = OpenAI()#调用GPT大模型
def get_completion(messages, tools, model="gpt-3.5-turbo"):response = client.chat.completions.create(model=model,messages=messages,# tool_choice支持设置 "auto"(由模型决定是否调用tool) 或者 "none" (不调用tool)作为value。 有tools定义时默认由模型决定。# 也可以强制要求必须调用指定的函数,如下所示# tool_choice= {"type": "function", "function": {"name": "multiply"}} ,  tools=tools)return response.choices[0].message#定义function/tool 1: multiply
def multiply(first_int: int, second_int: int) -> int:"""两个整数相乘"""return first_int * second_int#定义function/tool 2: add
def add(first_add: int, second_add: int) -> int:"""两个整数相加"""return first_add + second_add#以列表形式将function calling的格式告诉大模型
tools=[{"type": "function","function": {"name": "multiply","description": "两个整数相乘","parameters": {"type": "object","properties": {"first_int": {"type": "integer","description": "第一个乘数",},"second_int": {"type": "integer","description": "第二个乘数",}},"required": ["first_int", "second_int"],}}},{"type": "function","function": {"name": "add","description": "两个整数相加","parameters": {"type": "object","properties": {"first_add": {"type": "integer","description": "第一个加数",},"second_add": {"type": "integer","description": "第二个加数",}},"required": ["first_add", "second_add"],}}
}]# 调用大模型
prompt = "一共有3个人,每个人有15个苹果,10个鸭梨,一共有多少苹果?"
messages = [{"role": "user", "content": prompt}
]
response = get_completion(messages, tools)# 把大模型的回复加入到对话中
messages.append(response)  # 处理大模型需要function calling的情况
while (response.tool_calls is not None):# 循环进行function calling,将结果加入到对话中for tool_call in response.tool_calls:selected_tool = {"add": add, "multiply": multiply}[tool_call.function.name]args = json.loads(tool_call.function.arguments)tool_output = selected_tool(**args)messages.append({"tool_call_id": tool_call.id,  # 用于标识函数调用的 ID"role": "tool","name": tool_call.function.name,"content": str(tool_output)  # 数值result 必须转成字符串})# 调用大模型并把大模型的回复加入到对话中response = get_completion(messages, tools)messages.append(response)  print("=====最终回复=====")
print(response.content)

后续: 使用LangChain实现function calling

后续将更新:如何使用LangChain实现function calling,LangChain对比原生调用能提供哪些便利,以及其中可能出现的坑。

参考

OpenAI / function calling
LangChain / Tool/function calling

相关文章:

AI系列:大语言模型的function calling

目录 大语言模型(LLM) 的function calling实验:OpenAI之function calling序列图:function calling如何工作详情: 对话内容参考代码 后续: 使用LangChain实现function calling参考 大语言模型(LLM) 的function calling 大语言模型(LLM)可以使用自然语言与…...

conda 创建、激活、退出、删除虚拟环境

一、conda 本地环境常用操作 #获取版本号 conda --version 或 conda -V #检查更新当前conda conda update conda #查看当前存在哪些虚拟环境 conda env list 或 conda info -e #查看--安装--更新--删除包 conda list: conda search package_name# 查询包 cond…...

【Entity Framework】聊一聊EF中继承关系

【Entity Framework】聊一聊EF中继承关系 文章目录 【Entity Framework】聊一聊EF中继承关系一、概述二、实体类型层次结构映射三、每个层次结构一张表和鉴别器配置四、共享列五、每个类型一张表配置六、每个具体类型一张表配置七、TPC数据库架构八、总结 一、概述 Entity Fra…...

curaengine编译源码之libarcus编译记录

libArcus的编译(成功安装) This library contains C code and Python3 bindings for creating a socket in a thread and using this socket to send and receive messages based on the Protocol Buffers library. It is designed to facilitate the c…...

运用OSI模型提升排错能力

1. OSI模型有什么实际的应用价值? 2. 二层和三层网络的区别和应用; 3. 如何通过OSI模型提升组网排错能力? -- OSI - 开放式系统互联 - 一个互联标准 - 从软件和硬件 定义标准 - 不同厂商的设备 研发的技术 - 具备兼容性 -- O…...

【Node.js】Express学习笔记(黑马)

目录 初识 ExpressExpress 简介Express 的基本使用托管静态资源nodemon Express 路由路由的概念路由的使用 Express 中间件中间件的概念Express 中间件的初体验中间件的分类 初识 Express Express 简介 什么是 Express? 官方给出的概念:Express 是基于…...

Linux系统部署Tale个人博客并发布到公网访问

目录 ⛳️推荐 前言 1. Tale网站搭建 1.1 检查本地环境 1.2 部署Tale个人博客系统 1.3 启动Tale服务 1.4 访问博客地址 2. Linux安装Cpolar内网穿透 3. 创建Tale博客公网地址 4. 使用公网地址访问Tale ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站,通…...

CentOS7里ifcfg-eth0文件不存在解决方案/Centos7修改网络IP解决方案

Centos7网络IP地址手动设置 1、centos7没有ifcfg-eth0,我的centos7也没有其他博客说的什么ifcfg-ens33、ifcfg-ens32,然后我打开了我这里的ifcfg-eno***,结果发现就是centos6里的ifcfg-eth0里的网络配置。2、vim ifcfg-eno***(按t…...

go第三方库go.uber.org介绍

Uber 是一家美国硅谷的科技公司,也是 Go 语言的早期 adopter。其开源了很多 golang 项目,诸如被 Gopher 圈熟知的 zap、jaeger 等。2018 年年末 Uber 将内部的 Go 风格规范 开源到 GitHub,经过一年的积累和更新,该规范已经初具规模…...

Oracle 正则表达式

一、Oracle 正则表达式相关函数 (1) regexp_like :同 like 功能相似(模糊 匹配) (2) regexp_instr :同 instr 功能相似(返回字符所在 下标) (3) regexp_substr : 同 substr 功能相似&…...

MongoDB聚合运算符:$rand

MongoDB聚合运算符:$rand 文章目录 MongoDB聚合运算符:$rand语法举例生成随机数据点从集合中随机选择条目 $rand聚合运算符用于返回一个0~1之间的随机浮点数。 语法 { $rand: {} }$rand运算符不需要任何参数。每次调用$rand都会返回一个小数点后最多17位…...

如何在Linux通过docker搭建Plik文件系统并实现无公网IP管理内网文件

文章目录 1. Docker部署Plik2. 本地访问Plik3. Linux安装Cpolar4. 配置Plik公网地址5. 远程访问Plik6. 固定Plik公网地址7. 固定地址访问Plik 本文介绍如何使用Linux docker方式快速安装Plik并且结合Cpolar内网穿透工具实现远程访问,实现随时随地在任意设备上传或者…...

k8s部署efk

环境简介: kubernetes: v1.22.2 helm: v3.12.0 elasticsearch: 8.8.0 chart包:19.10.0 fluentd: 1.16.2 chart包: 5.9.4 kibana: 8.2.2 chart包:10.1.9 整体架构图: 一、Elasticsearch安装…...

AI模型大PK

🤖AI模型大PK!免费测试GPT-4等36款顶级聊天机器人 近年来,大型语言模型(LLM)的发展日新月异,各大科技巨头和研究机构纷纷推出了自己的聊天机器人。那么,如何才能知道哪个模型更强大、更智能呢&…...

Matlab|基于广义Benders分解法的综合能源系统优化规划

目录 1 主要内容 广义benders分解法流程图: 优化目标: 约束条件: 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序复现文章《综合能源系统协同运行策略与规划研究》第四章内容基于广义Benders分解法的综合能源系统优化规划&…...

vscode 打代码光标特效

vscode 打代码光标特效 在设置里面找到settings 进入之后在代码最下方加入此代码 "explorer.confirmDelete": false,"powermode.enabled": true, //启动"powermode.presets": "fireworks", // 火花效果// particles、 simple-rift、e…...

【代码随想录算法训练营第四十八天 | LeetCode198.打家劫舍、213.打家劫舍II、337.打家劫舍III】

代码随想录算法训练营第四十八天 | LeetCode198.打家劫舍、213.打家劫舍II、337.打家劫舍III 一、198.打家劫舍 解题代码C&#xff1a; class Solution { public:int rob(vector<int>& nums) {if (nums.size() 0) return 0;if (nums.size() 1) return nums[0];ve…...

蓝桥杯 — —灵能传输

灵能传输 友情链接&#xff1a;灵能传输 题目&#xff1a; 输入样例&#xff1a; 3 3 5 -2 3 4 0 0 0 0 3 1 2 3输出样例&#xff1a; 3 0 3思路&#xff1a; 题目大意&#xff1a;给出一个数组&#xff0c;每次选择数组中的一个数&#xff08;要求不能是第一个数与最后一个…...

智慧安防系统EasyCVR视频汇聚平台接入大华设备无法语音对讲的原因排查与解决

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台支持7*24小时实时高清视频监控&#xff0c;能同时播放多路监控视频流&#xff0c;视频画面1、4、9、16个可选&#xff0c;支持自定义视频轮播。EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标…...

基于Pytorch框架的CNN-LSTM模型在CWRU轴承故障诊断的应用

目录 1. 简介 2. 方法 2.1数据集 2.2模型架构 1. 简介 CWRU轴承故障诊断是工业领域一个重要的问题&#xff0c;及早发现轴承故障可以有效地减少设备停机时间和维修成本&#xff0c;提高生产效率和设备可靠性。传统的基于信号处理和特征提取的方法通常需要手工设计特征&…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...