【信号与系统 - 9】傅里叶变换的性质习题
1 习题
已知 f ( t ) f(t) f(t) 的傅里叶变换为 F ( j w ) F(jw) F(jw) ,求如下信号的傅里叶变换
-
(1) t ⋅ f ( 3 t ) t\cdot f(3t) t⋅f(3t)
解:
f ( 3 t ) ↔ 1 3 F ( j w 3 ) f(3t)\leftrightarrow \frac{1}{3}F(j\frac{w}{3}) f(3t)↔31F(j3w)
t ⋅ f ( 3 t ) ↔ j 1 3 ⋅ d d w [ F ( j w 3 ) ] t\cdot f(3t)\leftrightarrow j\frac{1}{3}\cdot\frac{d}{dw}[F(j\frac{w}{3})] t⋅f(3t)↔j31⋅dwd[F(j3w)]
其中: d ( w 3 ) = 1 3 d w d(\frac{w}{3})=\frac{1}{3}dw d(3w)=31dw,则 d w = 3 d ( w 3 ) dw=3d(\frac{w}{3}) dw=3d(3w),所以 d d w [ F ( j w 3 ) ] = 1 3 d d ( w 3 ) [ F ( j w 3 ) ] \frac{d}{dw}[F(j\frac{w}{3})]=\frac{1}{3}\frac{d}{d(\frac{w}{3})}[F(j\frac{w}{3})] dwd[F(j3w)]=31d(3w)d[F(j3w)],则 t ⋅ f ( 3 t ) ↔ j 1 9 ⋅ F ′ ( j w 3 ) t\cdot f(3t)\leftrightarrow j\frac{1}{9}\cdot F'(j\frac{w}{3}) t⋅f(3t)↔j91⋅F′(j3w) -
(2) ( t − 1 ) d [ f ( t ) ] d t (t-1)\frac{d[f(t)]}{dt} (t−1)dtd[f(t)]
解:
d [ f ( t ) ] d t ↔ j w F ( j w ) \frac{d[f(t)]}{dt}\leftrightarrow jwF(jw) dtd[f(t)]↔jwF(jw)
t ⋅ d [ f ( t ) ] d t ↔ j d d w [ j w F ( j w ) ] = − d d w [ w F ( j w ) ] = − [ F ( j w ) + w F ′ ( j w ) ] t\cdot\frac{d[f(t)]}{dt}\leftrightarrow j\frac{d}{dw}[jwF(jw)]=-\frac{d}{dw}[wF(jw)]=-[F(jw)+wF'(jw)] t⋅dtd[f(t)]↔jdwd[jwF(jw)]=−dwd[wF(jw)]=−[F(jw)+wF′(jw)]
( t − 1 ) ⋅ d [ f ( t ) ] d t ↔ j d d w [ j w F ( j w ) ] = − d d w [ w F ( j w ) ] = − [ F ( j w ) + w F ′ ( j w ) ] − j F ′ ( j w ) = − [ F ( j w ) + ( w + 1 ) F ′ ( j w ) ] (t-1)\cdot\frac{d[f(t)]}{dt}\leftrightarrow j\frac{d}{dw}[jwF(jw)]=-\frac{d}{dw}[wF(jw)]=-[F(jw)+wF'(jw)]-jF'(jw)=-[F(jw)+(w+1)F'(jw)] (t−1)⋅dtd[f(t)]↔jdwd[jwF(jw)]=−dwd[wF(jw)]=−[F(jw)+wF′(jw)]−jF′(jw)=−[F(jw)+(w+1)F′(jw)]
- (3) ( 2 − t ) f ( 2 − t ) (2-t)f(2-t) (2−t)f(2−t)
解:
f ( 2 − t ) = f [ − ( t − 2 ) ] ↔ F ( − j w ) e − j 2 w f(2-t)=f[-(t-2)]\leftrightarrow F(-jw)e^{-j2w} f(2−t)=f[−(t−2)]↔F(−jw)e−j2w
t ⋅ f ( 2 − t ) ↔ j d d w [ F ( − j w ) e − j 2 w = − j d d ( − w ) [ F ( − j w ) e − j 2 w ] = − j [ F ′ ( − j w ) e − j 2 w − j 2 F ( − j w ) e − j 2 w ] t\cdot f(2-t)\leftrightarrow j\frac{d}{dw}[F(-jw)e^{-j2w}=-j\frac{d}{d(-w)}[F(-jw)e^{-j2w}]=-j\Big[F'(-jw)e^{-j2w}-j2F(-jw)e^{-j2w}\Big] t⋅f(2−t)↔jdwd[F(−jw)e−j2w=−jd(−w)d[F(−jw)e−j2w]=−j[F′(−jw)e−j2w−j2F(−jw)e−j2w]
( 2 − t ) ⋅ f ( 2 − t ) ↔ 2 F ( − j w ) e − j 2 w + [ j F ′ ( − j w ) e − j 2 w − 2 F ( − j w ) e − j 2 w ] = j F ′ ( − j w ) e − j 2 w (2-t)\cdot f(2-t)\leftrightarrow 2F(-jw)e^{-j2w}+[jF'(-jw)e^{-j2w}-2F(-jw)e^{-j2w}]=jF'(-jw)e^{-j2w} (2−t)⋅f(2−t)↔2F(−jw)e−j2w+[jF′(−jw)e−j2w−2F(−jw)e−j2w]=jF′(−jw)e−j2w
2 补充:二倍角以及积化和差公式
{ c o s α ⋅ c o s β = 1 2 [ c o s ( α + β ) + c o s ( α − β ) ] 【调制】 s i n α ⋅ s i n β = 1 2 [ c o s ( α + β ) − c o s ( α − β ) ] c o s α ⋅ s i n β = 1 2 [ s i n ( α + β ) − s i n ( α − β ) ] s i n α ⋅ c o s β = 1 2 [ s i n ( α + β ) + s i n ( α − β ) ] \begin{cases} cos\alpha \cdot cos\beta=\frac{1}{2}[cos(\alpha+\beta)+cos(\alpha-\beta)]【调制】\\ sin\alpha \cdot sin\beta=\frac{1}{2}[cos(\alpha+\beta)-cos(\alpha-\beta)]\\ cos\alpha \cdot sin\beta=\frac{1}{2}[sin(\alpha+\beta)-sin(\alpha-\beta)]\\ sin\alpha \cdot cos\beta=\frac{1}{2}[sin(\alpha+\beta)+sin(\alpha-\beta)]\\ \end{cases} ⎩ ⎨ ⎧cosα⋅cosβ=21[cos(α+β)+cos(α−β)]【调制】sinα⋅sinβ=21[cos(α+β)−cos(α−β)]cosα⋅sinβ=21[sin(α+β)−sin(α−β)]sinα⋅cosβ=21[sin(α+β)+sin(α−β)]
s i n ( 2 α ) = 2 s i n α ⋅ c o s α sin(2\alpha)=2sin\alpha\cdot cos\alpha sin(2α)=2sinα⋅cosα
{ c o s ( 2 α ) = 2 c o s 2 α − 1 = 1 − 2 s i n 2 α = c o s 2 α − s i n 2 α c o s 2 α = c o s ( 2 α ) + 1 2 s i n 2 α = 1 − c o s ( 2 α ) 2 \begin{cases} cos(2\alpha)=2cos^2\alpha-1=1-2sin^2\alpha=cos^2\alpha-sin^2\alpha\\ cos^2\alpha=\frac{cos(2\alpha)+1}{2}\\ sin^2\alpha=\frac{1-cos(2\alpha)}{2}\\ \end{cases} ⎩ ⎨ ⎧cos(2α)=2cos2α−1=1−2sin2α=cos2α−sin2αcos2α=2cos(2α)+1sin2α=21−cos(2α)
t a n ( 2 α ) = 2 t a n α 1 − t a n 2 α tan(2\alpha)=\frac{2tan\alpha}{1-tan^2\alpha} tan(2α)=1−tan2α2tanα
相关文章:
【信号与系统 - 9】傅里叶变换的性质习题
1 习题 已知 f ( t ) f(t) f(t) 的傅里叶变换为 F ( j w ) F(jw) F(jw) ,求如下信号的傅里叶变换 (1) t ⋅ f ( 3 t ) t\cdot f(3t) t⋅f(3t) 解: f ( 3 t ) ↔ 1 3 F ( j w 3 ) f(3t)\leftrightarrow \frac{1}{3}F(j\frac{w}…...
C#探索之路基础夯实篇(5):语法糖概念解析
C#探索之路基础夯实篇(5):语法糖概念解析 文章目录 C#探索之路基础夯实篇(5):语法糖概念解析1、概念定义2、Lua中的语法糖3、C#中的语法糖4、C中的语法糖5、优缺点辨析6、适用范围7、总结 从之前一开始接触lua的时候开始,开始第一次接触到语法…...
SeaTunnel 与 DataX 、Sqoop、Flume、Flink CDC 对比
产品概述 Apache SeaTunnel 是一个非常易用的超高性能分布式数据集成产品,支持海量数据的离线及实时同步。每天可稳定高效同步万亿级数据,已应用于数百家企业生产,也是首个由国人主导贡献到 Apache 基金会的数据集成顶级项目。 SeaTunnel 主要解决数据集成领域的常见问题:…...
深入理解汇编:平栈、CALL和RET指令详解
视频学习下载地址:https://pan.quark.cn/s/04e6946a803a 汇编语言以其接近硬件的特性和高效的执行速度,在系统编程、性能优化和逆向工程中占有不可或缺的地位。本文将深入探讨汇编语言中的平栈操作以及CALL和RET指令&#…...
DP4 最小花费爬楼梯
原题链接:最小花费爬楼梯_牛客题霸_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 dp。 开一个dp数组和a数组。dp[i]表示在当前这一格所需要的费用,a数组其实就是题目中的cost数组。 因为最后要求到顶楼的最低费用&a…...
OpenXR API概览与核心组件解析
在虚拟现实(VR)和增强现实(AR)领域,OpenXR API提供了一个重要的开放标准,使得开发者能够跨多种硬件和软件平台创建兼容的应用。本文将详细解释OpenXR中的核心组件和数据结构,并探讨它们如何共同…...
安装指定版本的ant-design-vue和指定版本的@ant-design/icons-vue 图标组件包
前言: 最近在完成公司的项目时,为了兼容其他的版本,需要安装指定版本的ant-design-vue和ant-design/icons-vue 图标组件包,安装成功之后,分享如下: 安装命令: ant-design-vue: 不…...
Zynq7000系列中的休眠模式
休眠模式是在系统层面定义的,它包括将APU置于待机模式,并将多个控制器保持在无时钟的复位状态。 进入休眠模式可以大大降低功耗。在休眠模式下,大多数功能时钟组都会被关闭或断电。唯一需要保持活动的设备是一个CPU、窥探控制单元(…...
在redhat7/8平台上部署ELK7.17.18的技术方案
部署环境说明 为节省资源直接使用1台测试机模拟3节点elasticsearch服务集群做部署,在该主机上同时部署了3个elasticsearch实例、1个logstash实例、1个kibana实例、1个filebeat实例。对于生产环境,以上实例服务应该做分布式部署。 ELK-TEST1 192.168.10…...
(Chat For Al,创新Al,汇语Al助手,AiTab新标签,万能助手,LLaVA)分享6个好用的ChatGPT
目录 1、Chat For AI 2、创想AI 3、汇语AL助手...
MySQL-锁篇
文章目录 表级锁和行级锁了解吗?有什么区别?行级锁使用有什么注意事项?InnoDB有哪几类行锁?共享锁和排他锁是什么?意向锁有什么用? 锁是一种常见的并发事务的控制方式 表级锁和行级锁了解吗?有什…...
滤波器笔记(杂乱)
线性相位是时间平移,相位不失真 零、基础知识 1、用相量表示正弦量 https://zhuanlan.zhihu.com/p/345546880 https://www.zhihu.com/question/347763932/answer/1103938667 A s i n ( ω t θ ) ⇔ A e j θ ⇔ A ∠ θ Asin(\omega t\theta) {\Leftrightarrow…...
【ARFoundation自学01】搭建AR框架,检测平面点击位置克隆物体
Unity开发ARFoundation相关应用首先安装ARFoundation包 然后设置XR 1.基础AR场景框架搭建 2.一个基本的点击克隆物体到识别的平面脚本 挂在XROrigin上 脚本AppController 脚本说明书 ## 业务逻辑 AppController 脚本旨在实现一个基本的 AR 应用程序功能:用户通过…...
.Net ajax 接收参数
后端部分代码 一般处理程序 public void ProcessRequest(HttpContext context){context.Response.ContentType "text/plain";string str_index context.Request.Form.AllKeys.Contains("index") ? context.Request.Form["index"].ToString(…...
智能零售:引领购物新时代
智能零售通过整合人工智能、物联网、大数据和机器学习等技术,正在彻底改变传统的购物模式,为消费者和零售商提供前所未有的效率和个性化体验。 智能零售利用消费者数据分析来提供个性化的购物推荐。无论是在线平台或是实体店内,智能系统都能…...
【AIGC】AIGC在虚拟数字人中的应用:塑造未来互动体验的革新力量
🚀 🚀 🚀随着科技的快速发展,AIGC已经成为引领未来的重要力量。其中,AIGC在虚拟数字人领域的应用更是引起了广泛关注。虚拟数字人作为一种先进的数字化表达形式,结合了3D建模、动画技术、人工智能等多种先进…...
电机控制器电路板布局布线参考指导(五)
电机控制器电路板布局布线参考指导(五)大容量电容和旁路电容的放置 1.大容量电容的放置2.电荷泵电容器3.旁路电容/去耦电容的放置3.1 靠近电源3.2 靠近功率器件3.3 靠近开关电流源3.4 靠近电流感测放大器3.5 靠近稳压器 tips:资料主要来自网络…...
Python医院挂号脚本
作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。 会一些的技术:数据分析、算法、SQL、大数据相关、python 欢迎加入社区:码上找工作 作者专栏每日更新: LeetCode解锁1000题: 打怪升级之旅 python数据分析…...
LabVIEW光学探测器板级检测系统
LabVIEW光学探测器板级检测系统 特种车辆乘员舱的灭火抑爆系统广泛采用光学探测技术来探测火情。光学探测器作为系统的关键部件,其探测灵敏度、响应速度和准确性直接关系到整个系统的运行效率和安全性。然而,光学探测器在长期使用过程中可能会因为灰尘污…...
女上司问我:误删除PG百万条数据,可以闪回吗?
作者:IT邦德 中国DBA联盟(ACDU)成员,10余年DBA工作经验 擅长主流数据Oracle、MySQL、PG、openGauss运维 备份恢复,安装迁移,性能优化、故障应急处理等可提供技术业务: 1.DB故障处理/疑难杂症远程支援 2.Mysql/PG/Oracl…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
电脑桌面太单调,用Python写一个桌面小宠物应用。
下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡,可以响应鼠标点击,并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...
