当前位置: 首页 > news >正文

leetcode-合并两个有序链表

目录

题目

图解

方法一

方法二

代码(解析在注释中)

方法一

​编辑方法二


题目

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 

示例 1:

输入:l1 = [1,2,4], l2 = [1,3,4]
输出:[1,1,2,3,4,4]

示例 2:

输入:l1 = [], l2 = []
输出:[]

示例 3:

输入:l1 = [], l2 = [0]
输出:[0]

提示:

  • 两个链表的节点数目范围是 [0, 50]
  • -100 <= Node.val <= 100
  • l1 和 l2 均按 非递减顺序 排列

图解

方法一

最终效果

方法二

这个方法就比上一个方法多了一个“哨兵”,也就是用malloc开辟的一个辅助空间

代码(解析在注释中)

方法一

/*** 定义单链表结构体* 结构体中包含整数值val以及指向下一个节点的指针next*/
typedef struct ListNode ListNode;
struct ListNode {int val;struct ListNode *next;
};/*** 函数mergeTwoLists接收两个单链表(list1和list2)作为参数,* 并返回合并后的新链表,新链表中的元素按升序排列。*/
struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2) {// 首先判断输入的两个链表是否为空,如果其中一个为空,则直接返回另一个非空链表if (list1 == NULL) {return list2;}if (list2 == NULL) {return list1;}// 为了不对原链表进行修改,创建两个指针l1和l2分别指向list1和list2的头部ListNode* l1 = list1;ListNode* l2 = list2;// 初始化新链表的头结点和尾结点为NULLListNode *Newhead, *Newtail;Newhead = Newtail = NULL;// 使用while循环遍历两个链表直到其中一个链表遍历完为止while (l1 && l2) {// 比较当前节点的值大小,将较小值的节点添加到新链表中if (l1->val < l2->val) {// 如果新链表还未添加过节点,则设置新链表的头结点和尾结点都为l1if (Newhead == NULL) {Newhead = Newtail = l1;} else {// 否则将尾结点的next指向l1,并更新尾结点为新添加的节点Newtail->next = l1;Newtail = Newtail->next;}// 移动l1指针至下一个节点l1 = l1->next;} else {// 类似地处理l2的情况if (Newhead == NULL) {Newhead = Newtail = l2;} else {Newtail->next = l2;Newtail = Newtail->next;}l2 = l2->next;}}// 当某一个链表遍历完之后,将未遍历完的链表剩余部分连接到新链表的尾部if (l1) {Newtail->next = l1;}if (l2) {Newtail->next = l2;}// 返回新链表的头结点return Newhead;
}

方法二

/*** 定义单链表结构体* 结构体中包含整数值val以及指向下一个节点的指针next*/
typedef struct ListNode ListNode;
struct ListNode {int val;struct ListNode *next;
};/*** 函数mergeTwoLists接收两个单链表(list1和list2)作为参数,* 合并这两个已排序的链表,并返回合并后的新链表,新链表中的元素仍按升序排列。** 思路:* 1. 创建新的链表用于存放合并后的节点,初始化新链表头结点和尾结点。* 2. 使用while循环比较两个链表当前节点的值,将较小值的节点添加到新链表中。* 3. 当某个链表遍历完后,将另一个未遍历完链表的剩余部分添加到新链表尾部。* 4. 最后,释放初始分配给新链表头结点的空间,并返回新链表的第二个节点(实际内容的起始节点)。*/
struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2) {// 判断输入链表是否为空if (list1 == NULL) {return list2;}if (list2 == NULL) {return list1;}// 创建临时指针保存原始链表,避免改变它们ListNode* l1 = list1;ListNode* l2 = list2;// 分配内存创建新链表的头结点和尾结点ListNode *Newhead, *Newtail;Newhead = Newtail = (ListNode*)malloc(sizeof(ListNode));// 注意:这里实际上创建了一个空节点作为占位符,其next指针将指向实际的第一个合并节点// 循环遍历两个链表,将较小值的节点依次添加到新链表中while (l1 && l2) {if (l1->val < l2->val) {Newtail->next = l1;Newtail = Newtail->next;l1 = l1->next;} else {Newtail->next = l2;Newtail = Newtail->next;l2 = l2->next;}}// 将剩余未遍历完的链表连接到新链表尾部if (l1) {Newtail->next = l1;}if (l2) {Newtail->next = l2;}// 获取新链表的实际头部(即第一个有效节点),释放占位头结点的空间ListNode* next = Newhead->next;free(Newhead);Newhead = NULL; // 可选,置空便于调试或后续操作// 返回合并后的新链表的实际头部节点return next;
}

相关文章:

leetcode-合并两个有序链表

目录 题目 图解 方法一 方法二 代码(解析在注释中) 方法一 ​编辑方法二 题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1…...

006Node.js cnpm的安装

百度搜索 cnpm,进入npmmirror 镜像站https://npmmirror.com/ cmd窗口输入 npm install -g cnpm --registryhttps://registry.npmmirror.com...

web server apache tomcat11-01-官方文档入门介绍

前言 整理这个官方翻译的系列&#xff0c;原因是网上大部分的 tomcat 版本比较旧&#xff0c;此版本为 v11 最新的版本。 开源项目 同时也为从零手写实现 tomcat 提供一些基础和特性的思路。 minicat 别称【嗅虎】心有猛虎&#xff0c;轻嗅蔷薇。 系列文章 web server apac…...

java的总结

由于最近已经开始做项目了&#xff0c;所以对java的基础知识的学习都是一个离散化的状态没有一个很系统的学习&#xff0c;都是哪里不会就去学哪里。 先来讲一下前后端的区别吧 在我的理解前端就是&#xff1a;客户端在前端进行点击输入数据&#xff0c;前端将这些数据整合起来…...

解决npm run dev跑项目,发现node版本不匹配,怎么跑起来?【已解决】

首先问题点就是我们npm run dev 运行项目的时候发现出错&#xff0c;跑不起来&#xff0c;类型下面这种 这里的出错的原因在于我们的node版本跟项目的版本不匹配 解决办法 我这里的问题是我的版本是node14的&#xff0c;然后项目需要node20的&#xff0c;执行下面的就可以正…...

flood_fill 算法|图形渲染

flood fill 算法常常用来找极大连通子图&#xff0c;这是必须掌握的基本算法之一&#xff01; 图形渲染 算法原理 我们可以利用DFS遍历数组把首个数组的值记为color&#xff0c;然后上下左右四个方向遍历二维数组数组如果其他方块的值不等于color 或者越界就剪枝 return 代码…...

Promise简单概述

一. Promise是什么&#xff1f; 理解 1.抽象表达&#xff1a; Promise是一门新的技术(ES6规范) Promise是JS中进行异步编程的新解决方案(旧方案是单纯使用回调函数) 异步编程&#xff1a;包括fs文件操作&#xff0c;数据库操作(Mysql)&#xff0c;AJAX&#xff0c;定时器 2.具…...

【Java集合进阶】数据结构(平衡二又树旋转机制)数据结构(红黑树、红黑规则、添加节点处理方案详解)

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏 …...

富文本在线编辑器 - tinymce

tinymce 项目是一个比较好的富文本编辑器. 这里有个小demo, 下载下来尝试一下, 需要配置个本地服务器才能够访问, 我这里使用的nginx, 下面是我的整个操作过程: git clone gitgitee.com:chick1993/layui-tinymce.git cd layui-tinymcewget http://nginx.org/download/nginx-1.…...

从汇编代码理解数组越界访问漏洞

数组越界访问漏洞是 C/C 语言中常见的缺陷&#xff0c;它发生在程序尝试访问数组元素时未正确验证索引是否在有效范围内。通常情况下&#xff0c;数组的索引从0开始&#xff0c;到数组长度减1结束。如果程序尝试访问小于0或大于等于数组长度的索引位置&#xff0c;就会导致数组…...

skynet 使用protobuf

一、安装protobuf 下面的操作方法都是在 centos 环境下操作 #下载 Protocol Buffers 源代码&#xff1a; #您可以从 Protocol Buffers 的 GitHub 仓库中获取特定版本的源代码。使用以下命令克隆仓库 git clone -b v3.20.3 https://github.com/protocolbuffers/protobuf.git#编译…...

Vue Router 4 与 Router 3 路由配置与区别

文章目录 路由安装路由配置vue-router 3.x版本写法配置路由使用路由 vue-router 4.x版本写法配置路由使用路由 Vue Router 4 与 Vue Router 3 区别 路由安装 Vue 2 (使用 Vue Router 3) &#xff1a;npm install vue-router3 Vue 3 (使用 Vue Router 4) &#xff1a;npm insta…...

python借助elasticsearch实现标签匹配计数

给定一组标签 [{“tag_id”: “1”, “value”: “西瓜”}, {“tag_id”: “1”, “value”: “苹果”}]&#xff0c;我想精准匹配到现有的标签库中存在的标签并记录匹配成功的数量。 标签id(tag_id)标签名(tag_name)标签值(tag_name )1水果西瓜1水果苹果1水果橙子2动物老虎 …...

Yolo-world+Python-OpenCV之摄像头视频实时目标检测

上一次介绍了如何使用最基本的 Yolo-word来做检测&#xff0c;现在我们在加opencv来做个实时检测的例子 基本思路 1、读取离线视频流 2、将视频帧给yolo识别 3、根据识别结果 对视频进行绘制边框、加文字之类的 完整代码如下&#xff1a; import datetimefrom ultralytics …...

vue-treeselect 的基本使用

vue-treeselect 的基本使用 1. 效果展示2. 安装 插件3. 引入组件4. 代码 1. 效果展示 2. 安装 插件 vue-treeselect是一个树形的下拉菜单&#xff0c;至于到底有多少节点那就要看你的数据源有多少层了&#xff0c;挺方便的。下面这个这个不用多说吧&#xff0c;下载依赖 npm in…...

Vue(二)

文章目录 1.条件渲染1.关于js中的false的判定2.基本介绍3.v-if1.需求分析2.代码实例 4.v-show实现5.v-if与v-show比较6.课后练习 2.列表渲染1.代码实例2.课后练习 3.组件化编程1.基本介绍2.实现方式一_普通方式2.实现方式二_全局组件方式3.实现方式三_局部组件方式 4.生命周期和…...

Python基于深度学习的车辆特征分析系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…...

推理还原的干货

故事的递进还原 从下层故事到上层故事 设定还原 还原的逻辑 隐藏信息拼凑、因果导致果推因、规则还原现象 设计思路&#xff1a; 真解答 真解答的关键信息 推理逻辑链 哪些环节可以被误导 如何把关键信息变成伪解答 解释变形信息 给出识别变形信息的方法或线索 其实看似一个…...

【Redis 神秘大陆】006 灾备方案

六、Redis 灾备方案 6.1 存储方案 6.1.1 基础对比 RDB持久化AOF持久化原理周期性fork子进程生成持久化文件每次写入记录命令日志文件类型二进制dump快照文件文本appendonly日志文件触发条件默认超过300s间隔且有1s内超过1kb数据变更永久性每秒fsync一次文件位置配置文件中指…...

【Java基础】17.异常处理

文章目录 前言一、异常的概念1.异常的3种类型2.支持异常处理的关键字和类 二、Exception 类的层次三、内置异常类1.非检查性异常2.检查性异常类 四、异常处理1.捕获异常2.多重捕获块3.throws/throw 关键字1.throw 关键字2.throws 关键字 3.finally关键字 五、编译时异常处理方式…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...