当前位置: 首页 > news >正文

代码随想录:二叉树5

目录

102.二叉树的层序遍历

题目

代码(队列实现)

107.二叉树的层序遍历II

题目

代码

199.二叉树的右视图

题目

代码

637.二叉树的层平均值

题目

代码


102.二叉树的层序遍历

题目

        给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]

代码(队列实现)

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<List<Integer>> levelOrder(TreeNode root) {//res保存每一层的结果集List<List<Integer>> res = new ArrayList<List<Integer>>();//如果根节点为空,直接返回if(root == null){return res;}//que队列,用来保存访问过但还没处理的节点Queue<TreeNode> que = new ArrayDeque<>();que.offer(root); //根节点入队,队列有一个节点//当队列非空,说明还有节点没处理while(!que.isEmpty()){int len = que.size(); //当前队列长度就是这一层的元素个数List<Integer> tmpRes = new ArrayList<>(); //用来保存这一层的结果值//逐个处理这一层的每个节点while(len > 0){TreeNode tmp = que.poll();  //出队tmpRes.add(tmp.val);  //加入暂时结果集//左孩子进队if(tmp.left != null){que.offer(tmp.left);}//右孩子进队if(tmp.right != null){que.offer(tmp.right);}len--;} res.add(tmpRes); //加入单层结果集}return res;}
}

107.二叉树的层序遍历II

题目

给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[15,7],[9,20],[3]]

代码

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<List<Integer>> levelOrderBottom(TreeNode root) {//res保存每一层的结果集List<List<Integer>> res = new ArrayList<List<Integer>>();//如果根节点为空,直接返回if(root == null){return res;}//que队列,用来保存访问过但还没处理的节点Queue<TreeNode> que = new ArrayDeque<>();que.offer(root); //根节点入队,队列有一个节点//当队列非空,说明还有节点没处理while(!que.isEmpty()){int len = que.size(); //当前队列长度就是这一层的元素个数List<Integer> tmpRes = new ArrayList<>(); //用来保存这一层的结果值//逐个处理这一层的每个节点while(len > 0){TreeNode tmp = que.poll();  //出队tmpRes.add(tmp.val);  //加入暂时结果集//左孩子进队if(tmp.left != null){que.offer(tmp.left);}//右孩子进队if(tmp.right != null){que.offer(tmp.right);}len--;} res.add(tmpRes); //加入单层结果集}//把自顶而下的层序遍历逆序List<List<Integer>> lastres = new ArrayList<List<Integer>>();for(int i = res.size()-1; i >= 0; i--){lastres.add(res.get(i));}return lastres;}
}

199.二叉树的右视图

题目

        给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

示例 1:

输入: [1,2,3,null,5,null,4]
输出: [1,3,4]

代码

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> rightSideView(TreeNode root) {//res保存每一层的结果集List<List<Integer>> res = new ArrayList<List<Integer>>();//保存返回结果List<Integer> lastres = new ArrayList<>();//如果根节点为空,直接返回if(root == null){return lastres;}//que队列,用来保存访问过但还没处理的节点Queue<TreeNode> que = new ArrayDeque<>();que.offer(root); //根节点入队,队列有一个节点//当队列非空,说明还有节点没处理while(!que.isEmpty()){int len = que.size(); //当前队列长度就是这一层的元素个数List<Integer> tmpRes = new ArrayList<>(); //用来保存这一层的结果值//逐个处理这一层的每个节点while(len > 0){TreeNode tmp = que.poll();  //出队tmpRes.add(tmp.val);  //加入暂时结果集//左孩子进队if(tmp.left != null){que.offer(tmp.left);}//右孩子进队if(tmp.right != null){que.offer(tmp.right);}len--;} res.add(tmpRes); //加入单层结果集}//返回每一次的最右(最后)元素for(int i=0; i < res.size(); i++){List<Integer> tmpRes = res.get(i);lastres.add(tmpRes.get(tmpRes.size()-1));}return lastres;}
}

637.二叉树的层平均值

题目

给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[3.00000,14.50000,11.00000]
解释:第 0 层的平均值为 3,第 1 层的平均值为 14.5,第 2 层的平均值为 11 。
因此返回 [3, 14.5, 11] 

代码

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Double> averageOfLevels(TreeNode root) {//res保存层序遍历结果List<List<Integer>> res = new ArrayList<List<Integer>>();List<Double> lastres = new ArrayList<>();//如果根节点为空,直接返回if(root == null){return lastres;}//que队列,用来保存访问过但还没处理的节点Queue<TreeNode> que = new ArrayDeque<>();que.offer(root); //根节点入队,队列有一个节点//当队列非空,说明还有节点没处理while(!que.isEmpty()){int len = que.size(); //当前队列长度就是这一层的元素个数List<Integer> tmpRes = new ArrayList<>(); //用来保存这一层的结果值//逐个处理这一层的每个节点while(len > 0){TreeNode tmp = que.poll();  //出队tmpRes.add(tmp.val);  //加入暂时结果集//左孩子进队if(tmp.left != null){que.offer(tmp.left);}//右孩子进队if(tmp.right != null){que.offer(tmp.right);}len--;} res.add(tmpRes); //加入单层结果集}//计算每一层的平均值for(int i = 0; i < res.size(); i++){List<Integer> tmplist = res.get(i);double sum = 0;for(int j=0; j < tmplist.size(); j++){sum += tmplist.get(j);}lastres.add(sum/tmplist.size());}return lastres;}
}

相关文章:

代码随想录:二叉树5

目录 102.二叉树的层序遍历 题目 代码&#xff08;队列实现&#xff09; 107.二叉树的层序遍历II 题目 代码 199.二叉树的右视图 题目 代码 637.二叉树的层平均值 题目 代码 102.二叉树的层序遍历 题目 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍…...

Tomcat 获取客户端真实IP X-Forwarded-For

Tomcat 获取客户端真实IP X-Forwarded-For 代码实现&#xff1a; 在Host标签下面添加代码&#xff1a; <Valve className"org.apache.catalina.valves.RemoteIpValve" remoteIpHeader"x-forwarded-for" remoteIpProxiesHeader"x-forwarded-by&q…...

记录PS学习查漏补缺

PS学习 PS学习理论快捷键抠图PS专属多软件通用快捷键 PS学习 理论 JPEG &#xff08;不带透明通道&#xff09; PNG (带透明通道) 快捷键 抠图 抠图方式 魔棒工具 反选选中区域 CtrlShiftI&#xff08;反选&#xff09; 钢笔抠图注意事项 按着Ctrl单击节点 会出现当前节…...

Kafka 架构深入探索

目录 一、Kafka 工作流程及文件存储机制 二、数据可靠性保证 三 、数据一致性问题 3.1follower 故障 3.2leader 故障 四、ack 应答机制 五、部署FilebeatKafkaELK 5.1环境准备 5.2部署ELK 5.2.1部署 Elasticsearch 软件 5.2.1.1修改elasticsearch主配置文件 5.2…...

k-means聚类算法的MATLAB实现及可视化

K-means算法是一种无监督学习算法&#xff0c;主要用于数据聚类。其工作原理基于迭代优化&#xff0c;将数据点划分为K个集群&#xff0c;使得每个数据点都属于最近的集群&#xff0c;并且每个集群的中心&#xff08;质心&#xff09;是所有属于该集群的数据点的平均值。以下是…...

Excel文件转Asc文件

单个转换 import os import pandas as pdfilename (10)result01-1.xlsx df pd.read_excel(filename) # 读取Excel文件# 将数据保存为ASC格式 asc_filename os.path.splitext(filename)[0] .asc # 获取文件名并替换扩展名 with open(asc_filename, w) as file:# 写入文件…...

【题目】【信息安全管理与评估】2022年国赛高职组“信息安全管理与评估”赛项样题7

【题目】【信息安全管理与评估】2022年国赛高职组“信息安全管理与评估”赛项样题7 信息安全管理与评估 网络系统管理 网络搭建与应用 云计算 软件测试 移动应用开发 任务书&#xff0c;赛题&#xff0c;解析等资料&#xff0c;知识点培训服务 添加博主wx&#xff1a;liuliu548…...

Webrtc 信令服务器实现

webrtc建联流程图 由上图可知&#xff0c;所谓的信令服务器其实就是将peer的offer/candidate/answer传给对端而已。这样的话实现方式就有很多种了&#xff0c;目前普遍的方式HTTP/HTTPS&#xff0c;WS/WSS。像webrtc-demo-peerconnection就是实现HTTP这种方式。本文使用WS&…...

【Blockchain】连接智能合约与现实世界的桥梁Chainlink

去中心化预言机试图实现依赖因果关系而不是个人关系的去信任和确定性结果。它以与区块链网络相同的方式实现这些结果&#xff0c;即在许多网络参与者之间分配信任。通过利用许多不同的数据源并实施不受单个实体控制的预言机系统&#xff0c;去中心化的预言机网络有可能为智能合…...

解决EasyPoi导入Excel获取不到第一列的问题

文章目录 1. 复现错误2. 分析错误2.1 导入的代码2.2 DictExcel实体类2.2 表头和标题3. 解决问题1. 复现错误 使用EasyPoi导入数据时,Excel表格如下图: 但在导入时,出现如下错误: name为英文名称,在第一列,Excel表格有值,但导入的代码中为null,就很奇怪? 2. 分析错误 …...

Vue 阶段练习:记事本

将 Vue快速入门 和 Vue 指令的学习成果应用到实际场景中&#xff08;如该练习 记事本&#xff09;&#xff0c;我们能够解决实际问题并提升对 Vue 的技能掌握。 目录 功能展示 需求分析 我的代码 案例代码 知识点总结 功能展示 需求分析 列表渲染删除功能添加功能底部统计…...

JavaScript判断受访域名,调用不同的js文件

比如&#xff1a;我有三个域名&#xff1a; ① dengoo.net ② jfzm.cc ③ ceeha.com 如果当前访问的是 dengoo.net 域名及域名下页面&#xff0c;则调用 a.js 如果当前访问的是 jfzm.cc 域名及域名下页面&#xff0c;则调用 b.js 如果当前访问的是 ceeha.com 域名及域名下…...

下载软件时的Ubuntu x86_64-v2、skylake、aarch64版本分别代表什么?

Ubuntu-x86_64-v2、Ubuntu-x86_64-skylake和Ubuntu-aarch64都是Ubuntu的不同版本或变种&#xff0c;它们之间的主要区别在于所支持的硬件架构和针对特定硬件的优化。 Ubuntu-x86_64-v2&#xff1a; 这是基于x86_64&#xff08;也称为AMD64或Intel 64&#xff09;架构的Ubuntu版…...

数字化社交的引擎:解析Facebook的影响力

Facebook&#xff0c;作为全球最大的社交媒体平台&#xff0c;已经深深地融入了我们的日常生活和文化中。它不仅仅是一个简单的社交工具&#xff0c;更是一个复杂的数字生态系统&#xff0c;影响着我们的社交模式、文化认同以及信息获取方式。在这篇文章中&#xff0c;我们将深…...

淘宝API商品详情数据在数据分析行业中具有不可忽视的重要性

淘宝商品详情数据在数据分析行业中具有不可忽视的重要性。这些数据为商家、市场分析师以及数据科学家提供了丰富的信息&#xff0c;有助于他们更深入地理解市场动态、消费者行为以及商品竞争态势。以下是淘宝商品详情数据在数据分析行业中的重要性体现&#xff1a; 请求示例&a…...

【产品】ANET智能通信管理机 物联网网关 电力监控/能耗监测/能源管理系统

产品概述 本系列智能通信管理机是一款采用嵌入式硬件计算机平台&#xff0c;具有多个下行通信接口及一个或者多个上行网络接口&#xff0c;用于将一个目标区域内所有的智能监控/保护装置的通信数据整理汇总后&#xff0c;实时上传主站系统&#xff0c;完成遥信、遥测等能源数据…...

R语言数据分析案例

在R语言中进行数据分析通常涉及数据的导入、清洗、探索、建模和可视化等步骤。以下是一个简化的案例&#xff0c;展示了如何使用R语言进行数据分析&#xff1a; 1. 数据导入 首先&#xff0c;你需要将数据导入R环境中。这可以通过多种方式完成&#xff0c;例如使用read.csv()…...

vscode debug 配置:launch.json

打开新项目左边的“运行和调试” 点击蓝色字体“创建 launch.json 文件” 选择上方“python” 选择“Python 文件 调试当前正在运行的Python文件” 配置launch.json文件内容&#xff1a; {// 使用 IntelliSense 了解相关属性// 悬停以查看现有属性的描述。// 欲了解更多信息&a…...

idea工具使用Tomcat创建jsp 部署servlet到服务器

使用tomcat创建jsp 在tomcat官网中下载对应windows版本的tomcat文件 Apache Tomcat - Welcome! 解压到系统目录中&#xff0c;记得不要有中文路径 新建一个java项目 点击右上角 点击加号 找到Tomcat Service的 Local 点击右下角的Fix一下&#xff0c;然后ok关闭 再重新打开一…...

MyBatisPlus自定义SQL

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉🍎个人主页:Leo的博客💞当前专栏: 循序渐进学SpringBoot ✨特色专栏: MySQL学习 🥭本文内容:MyBatisPlus自定义SQL 📚个人知识库: Leo知识库,欢迎大家访问 目录 1.前言☕…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...