当前位置: 首页 > news >正文

GoogleNet网络训练集和测试集搭建

测试集和训练集都是在之前搭建好的基础上进行修改的,重点记录与之前不同的代码。

还是使用的花分类的数据集进行训练和测试的。

一、训练集

1、搭建网络

设置参数:使用辅助分类器,采用权重初始化

net = GoogleNet(num_classes=5, aux_logits=True, init_weights=True)

2、参数输出

之前的模型只有 1 个输出,但由于GoogleNet使用了两个辅助分类器,所以会有 3 个输出。

定义三个输出,分别计算主分类器、辅助分类器1、辅助分类器2的损失函数并相加,最后将损失函数反向传播,使用优化器更新参数模型。 

不单独放代码了,不知道哪里是改动的。图片中红色框中是改动的

整个训练集的代码

import torch
import torch.nn as nn
from torchvision import transforms, datasets, utils
import matplotlib as plt
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
from model import GoogleNet
import os
import json
import timedevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),"val": transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))
image_path = data_root + "/data_set/flower_data"
# train set
train_dataset = datasets.ImageFolder(root=image_path + "/train",transform=data_transform["train"])
train_num = len(train_dataset)# {'daisy': 0, 'dandelion': 1, 'roses': 2, 'sunflower': 3, 'tulips': 4}
flower_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in flower_list.items())
# 把文件写入接送文件
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices,json', 'w') as json_file:json_file.write(json_str)batch_size = 32
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size, shuffle=True,num_workers=0)
#
validate_dataset = datasets.ImageFolder(root=image_path + "/val",transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size,shuffle=False, num_workers=0)# test_data_iter = iter(validate_loader)
# test_image, test_label = next(test_data_iter)
#
# # 查看图片
# def imshow(img):
#     img = img / 2 + 0.5
#     nping = img.numpy()
#     plt.imshow(np.transpose(nping, (1, 2, 0)))
#     plt.show()
# # print labels
# print(' '.join('%5s' % str(cla_dict[test_label[j].item()]) for j in range(4)))
# # show images
# imshow(utils.make_grid(test_image))net = GoogleNet(num_classes=5, aux_logits=True, init_weights=True)
net.to(device)
loss_function = nn.CrossEntropyLoss()optimizer = optim.Adam(net.parameters(), lr=0.0003)best_acc = 0.0
save_path = './GoogleNet.pth'
# best_acc = 0.0
for epoch in range(2):# trainnet.train()running_loss = 0.0t1 = time.perf_counter()for step, data in enumerate(train_loader, start=0):images, labels = dataoptimizer.zero_grad()logits, aux_logits2, aux_logits1 = net(images.to(device))loss0 = loss_function(logits, labels.to(device))loss1 = loss_function(aux_logits1, labels.to(device))loss2 = loss_function(aux_logits2, labels.to(device))loss = loss0 + loss1 * 0.3 + loss2 * 0.3loss.backward()optimizer.step()# print statisticsrunning_loss += loss.item()rate = (step+1) / len(train_loader)a = "*" * int(rate*50)b = "." *int((1-rate)*50)print("\rtrain loss: (:3.0f)%[()->:.3f)".format(int(rate * 100), a, b, loss), end="")print()print(time.perf_counter()-t1)net.eval()acc = 0.0with torch.no_grad():for data_test in validate_loader:test_images, test_labels = data_testoutputs = net(test_images.to(device))predict_y = torch.max(outputs, dim=1)[1]acc += (predict_y == test_labels.to(device)).sum().item()accurate_test = acc / val_numif accurate_test > best_acc:best_acc = accurate_testtorch.save(net.state_dict(), save_path)print('[epoch %d] train_loss: %.3f test_accuracy: %.3f' %(epoch + 1, running_loss / step, acc / val_num))
print("Finished Training")

训练完成 

 中间有几次报错,不过在看懂报错后很快改过来了。

二、测试集

载入模型

在创建模型的时候,aux_logits不会构建辅助分类器,但是之前训练的参数会保存。

所以,在载入模型的时候,要设置参数strict=False, 它可以精准匹配当前模型与所需要载入的权重模型的结构。

辅助分类器中的参数全部存放在unexpecte_keys中。

测试集全部代码

 可以自己找图片进行预测看准确率。

import torch
import matplotlib.pyplot as plt
import json
from model import GoogleNet
from PIL import Image
from torchvision import transformsdata_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])# load image
img = Image.open("8.jpeg")
plt.imshow(img)
img = data_transform(img)
img = torch.unsqueeze(img, dim=0)# read class_indent
try:json_file = open('./class_indices,json', 'r')class_indict = json.load(json_file)
except Exception as e:print(e)exit(-1)# create model
model = GoogleNet(num_classes=5, aux_logits=False)
model_weight_path = "./GoogleNet.pth"
missing_keys, unexpected_keys = model.load_state_dict(torch.load(model_weight_path), strict=False)
model.eval()
with torch.no_grad():output = torch.squeeze(model(img))predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()
print(class_indict[str(predict_cla)], predict[predict_cla].item())
plt.show()

准确率好低,可能是模型训练的还不够吧。

相关文章:

GoogleNet网络训练集和测试集搭建

测试集和训练集都是在之前搭建好的基础上进行修改的,重点记录与之前不同的代码。 还是使用的花分类的数据集进行训练和测试的。 一、训练集 1、搭建网络 设置参数:使用辅助分类器,采用权重初始化 net GoogleNet(num_classes5, aux_logi…...

将数字状态码在后台转换为中文状态

这是我们的实体类 可以看出我们的状态status是2如过返回到前端我们根本不知道2代表的是什么,所以我们需要再这里将数字转换成能看懂的中文状态,首先我们创建一个枚举类 先将我们状态码所对应的中文状态枚举出来,然后创建一个静态方法&#…...

2017NOIP普及组真题 4. 跳房子

线上OJ: 一本通:http://ybt.ssoier.cn:8088/problem_show.php?pid1417\ 核心思想 首先、本题中提到 “ 至少 要花多少金币改造机器人,能获得 至少 k分 ”。看到这样的话语,基本可以考虑要使用 二分答案。 那么,本题中…...

网络与 Internet因特网的基本概念

目录 网络Internet (互联网或互连网)Internet(因特网)待续、更新中 网络 指将分布在不同地理位置的、相同或不同类型的网络通过网络互连设备(中继器、网桥、路由器或网关等)相互连接,形成一个范…...

vue-router 中 router-link 与 a 标签的区别

文章目录 前言 a标签定义 router-link定义 总结 前言 vue-router 中 router-link 与 a 标签的区别 a标签定义 <a> 标签定义超链接&#xff0c;用于从一张页面链接到另一张页面。 从一张页面跳转到另一张页面&#xff0c;但从这里来说就违背了多视图的单页Web应用这个…...

MySQL基础知识——MySQL事务

事务背景 什么是事务&#xff1f; 一组由一个或多个数据库操作组成的操作组&#xff0c;能够原子的执行&#xff0c;且事务间相互独立&#xff1b; 简单来说&#xff0c;事务就是要保证一组数据库操作&#xff0c;要么全部成功&#xff0c;要么全部失败。 注&#xff1a;MyS…...

【架构方法论(一)】架构的定义与架构要解决的问题

文章目录 一. 架构定义与架构的作用1. 系统与子系统2. 模块与组件3. 框架与架构4. 重新定义架构&#xff1a;4R 架构 二、架构设计的真正目的-别掉入架构设计的误区1. 是为了解决软件复杂度2. 简单的复杂度分析案例 三. 案例思考 本文关键字 架构定义 架构与系统的关系从业务逻…...

基于springboot实现人口老龄化社区服务与管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现人口老龄化社区服务与管理系统演示 摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了人口老龄化社区服务与管理平台的开发全过程。通过分析人口老龄化社区服务与管理平台方面的不足&#xff…...

代码随想录算法训练营第三十七天| LeetCode 738.单调递增的数字、总结

一、LeetCode 738.单调递增的数字 题目链接/文章讲解/视频讲解&#xff1a;https://programmercarl.com/0738.%E5%8D%95%E8%B0%83%E9%80%92%E5%A2%9E%E7%9A%84%E6%95%B0%E5%AD%97.html 状态&#xff1a;已解决 1.思路 如何求得小于等于N的最大单调递增的整数&#xff1f;98&am…...

C++动态内存管理 解剖new/delete详细讲解(operator new,operator delete)

讨厌抄我作业和不让我抄作业的人 讨厌插队和不让我插队的人 讨厌用我东西和不让我用东西的人 讨厌借我钱和不借给我钱的人 讨厌开车加塞和不让我加塞的人 讨厌内卷和打扰我内卷的人 一、C中动态内存管理 1.new和delete操作内置类型 2.new和delete操作自定义类型 二、operat…...

python-re正则笔记0.2.0

1. 匹配linux文件路径 from re import match, search,findall str"sh refreshConfig.sh /opt/client/ccc.txt /opt/client/ccc.dfs 胜多负少的"patter1"\/.\.\w" print(findall(patter1, str))""" [/opt/client/ccc.txt /opt/client/ccc…...

.NET SignalR Redis实时Web应用

环境 Win10 VS2022 .NET8 Docker Redis 前言 什么是 SignalR&#xff1f; ASP.NET Core SignalR 是一个开放源代码库&#xff0c;可用于简化向应用添加实时 Web 功能。 实时 Web 功能使服务器端代码能够将内容推送到客户端。 适合 SignalR 的候选项&#xff1a; 需要从服…...

【热门话题】常见分类算法解析

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 常见分类算法解析1. 逻辑回归&#xff08;Logistic Regression&#xff09;2. 朴…...

有效利用MRP能为中小企业带来什么?

在离散制造企业&#xff0c;主流的生产模式主要为面向订单生产和面向库存生产&#xff08;又称为预测生产&#xff09;&#xff0c;在中小企业中&#xff0c;一般为面向订单生产&#xff0c;也有部分面向库存和面向订单混合的生产方式&#xff08;以面向订单为主&#xff0c;面…...

InternlM2

第一次作业 基础作业 进阶作业 1. hugging face下载 2. 部署 首先&#xff0c;从github上git clone仓库 https://github.com/InternLM/InternLM-XComposer.git然后里面的指引安装环境...

2024-12.python高级语法

异常处理 首先我们要理解什么叫做**"异常”**&#xff1f; 在程序运行过程中&#xff0c;总会遇到各种各样的问题和错误。有些错误是我们编写代码时自己造成的&#xff1a; 比如语法错误、调用错误&#xff0c;甚至逻辑错误。 还有一些错误&#xff0c;则是不可预料的错误…...

【C语言】贪吃蛇项目(1) - 部分Win32 API详解 及 贪吃蛇项目思路

文章目录 一、贪吃蛇项目需要实现的基本功能二、Win32 API介绍2.1 控制台2.2 部分控制台命令及调用函数mode 和 title 命令COORD 命令GetStdHandle&#xff08;获取数据&#xff09;GetConsoleCursorInfo&#xff08;获取光标数据&#xff09;SetConsoleCursorInfo &#xff08…...

秋叶Stable diffusion的创世工具安装-带安装包链接

来自B站up秋葉aaaki&#xff0c;近期发布了Stable Diffusion整合包v4.7版本&#xff0c;一键在本地部署Stable Diffusion&#xff01;&#xff01; 适用于零基础想要使用AI绘画的小伙伴~本整合包支持SDXL&#xff0c;预装多种必须模型。无需安装git、python、cuda等任何内容&am…...

华为ensp中aaa(3a)实现telnet远程连接认证配置命令

作者主页&#xff1a;点击&#xff01; ENSP专栏&#xff1a;点击&#xff01; 创作时间&#xff1a;2024年4月14日18点49分 AAA认证的全称是Authentication、Authorization、Accounting&#xff0c;中文意思是认证、授权、计费。 以下是详细解释 认证&#xff08;Authentic…...

前端网络---http协议和https协议的区别

http协议和https的区别 1、http是超文本传输协议&#xff0c;信息是明文传输&#xff0c;https则是具有安全性的ssl加密传输协议。 2、http和https使用的端口不一样&#xff0c;http是80&#xff0c;https是443。 3、http的连接很简单&#xff0c;是无状态的&#xff08;可以…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...