当前位置: 首页 > news >正文

每日OJ题_完全背包④_力扣279. 完全平方数(一维和二维)

目录

力扣279. 完全平方数

问题解析

解析代码

优化代码(相同子问题分析和滚动数组)


力扣279. 完全平方数

279. 完全平方数

难度 中等

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13输出:2
解释:13 = 4 + 9

提示:

  • 1 <= n <= 10^4
class Solution {
public:int numSquares(int n) {}
};

问题解析

(优化代码部分放了分析一维空间的思路,这个普通思路就简单描述了)

状态表示: dp[i][j] 表示:从前i个完全平方数中挑选,总和正好等于j,所有选法中最小的数量。

状态转移方程:

        线性 dp 状态转移方程分析方式,一般都是根据最后一步的状况,来分情况讨论。但是最后一个物品能选很多个,因此需要分很多情况:

  • 选 0 个i * i:dp[i][j] = dp[i - 1][j] 
  • 选 1 个i * i:dp[i][j] = dp[i - 1][j - i * i] + 1 ;
  • 选 2 个i * i:dp[i][j] = dp[i - 1][j - 2 * i * i] + 2 ;
  • ......

综上,状态转移方程为:

dp[i][j] = min(dp[i - 1][j] , dp[i - 1][j - i * i] + 1 + dp[i - 1][j - 2 * i * i] + 2 ,  ......)

        这时发现,计算一个状态的时候,需要一个循环才能搞定的时候,我们要想到去优化。优化的方向就是用一个或者两个状态来表示这一堆的状态,通常就是用数学的方式做一下等价替换。

        发现第二维是有规律的变化的,因此去看看 dp[i][j - i * i] + 1 ; 这个状态: dp[i][j - i * i] + 1 = min( dp[i - 1][j - 2 * i * i] + 2 , dp[i - 1][j - 3 * i * i] + 3  ,  ......)

        因此可以修改我们的状态转移方程为: dp[i][j] = min(dp[i - 1][j] , dp[i][j - i * i] + 1。(j >= i * i )。有个技巧,就是相当于把第二种情况 dp[i - 1][j - i * i] + 1 里面的 i - 1 变成 i 即可。

初始化: 初始化第一行即可,dp[0[0]为1,第一行后面初始化成无穷大。

填表顺序: 根据状态转移方程,仅需从上往下填表。

返回值: 根据状态表示,返回 dp[根号n][n] 。


解析代码

class Solution {
public:int change(int amount, vector<int>& coins) {int n = coins.size();vector<int> dp(amount + 1, 0); // 滚动数组优化dp[0] = 1;for(int i = 1; i <= n; ++i){for(int j = coins[i - 1]; j <= amount; ++j){dp[j] = dp[j] + dp[j - coins[i - 1]];}}return dp[amount];}
};

优化代码(相同子问题分析和滚动数组)

        先看能不能将问题转化成我们熟悉的题型。这里给出一个用拆分出相同子问题的方式,定义一个状态表示。(得到的结果 i 和 j 换一下就是滚动数组优化的结果)

为了叙述方便,把和为 n 的完全平方数的最少数量简称为最小数量

对于 12 这个数,分析一下如何求它的最小数量。

  • 如果 12 本身就是完全平方数,就不用算了,直接返回 1 ;
  • 但是 12 不是完全平方数,试着把问题分解⼀下:
  1. 情况一:拆出来一个 1 ,然后看看 11 的最小数量,记为 x1 ;
  2. 情况二:拆出来一个 4 ,然后看看 8 的最小数量,记为 x2 ;(为什么拆出来 4 , 而不拆出来 2 呢?)
  3. 情况三:拆出来一个 8 ...... 其中,接下来求 11、8 的时候,其实又回到了原来的问题上。

        因此,可以尝试用 dp 的策略,将 1 2 3 4 6 等等这些数的最小数量依次保存起来。再求较大的 n 的时候,直接查表,然后找出最小数量。

状态表示: dp[i] 表示:和为 i 的完全平方数的最少数量。

状态转移方程:

        对于 dp[i] ,根据思路里的分析知道,可以根据小于等于 i 的所有完全平方数 x 进行划分:

  • x = 1 时,最小数量为: 1 + dp[i - 1] ;
  • x = 4 时,最小数量为: 1 + dp[i - 4] ......

为了方便枚举完全平方数,采用的策略: for(int j = 1; j * j <= i; j++)

综上,状态转移方程为:

dp[i] = min(dp[i], dp[i - j * j] + 1)

初始化:当 n = 0 的时候,没法拆分,结果为 0 ; 当 n = 1 的时候,结果为 1 。

填表顺序: 根据状态转移方程,仅需从左往右填表。

返回值: 根据状态表示,返回 dp[n] 。

class Solution {
public:int numSquares(int n) {// dp[i] 表示:和为 i 的完全平方数的最少数量int m = sqrt(n);vector<int> dp(n + 1, 0x3f3f3f3f);dp[0] = 0;for(int i = 1; i <= m; ++i){for(int j = i * i; j <= n; ++j){dp[j] = min(dp[j], dp[j - i * i] + 1);}}return dp[n];}
};

相关文章:

每日OJ题_完全背包④_力扣279. 完全平方数(一维和二维)

目录 力扣279. 完全平方数 问题解析 解析代码 优化代码&#xff08;相同子问题分析和滚动数组&#xff09; 力扣279. 完全平方数 279. 完全平方数 难度 中等 给你一个整数 n &#xff0c;返回 和为 n 的完全平方数的最少数量 。 完全平方数 是一个整数&#xff0c;其值…...

web项目中jsp页面不识别el表达式

如果使用el表达式出现下图问题 ** 解决办法 ** 这是因为maven创建项目时&#xff0c;web.xml头部声明默认是2.3&#xff0c;这个默认jsp关闭el表达式 修改web.xml文件开头的web-app的版本 <?xml version"1.0" encoding"UTF-8"?> <web-app x…...

【Python基础】字典

文章目录 [toc]什么是字典键值对示例键异常 遍历列表什么是遍历遍历字典的键keys()方法 遍历字典的值values()方法 遍历字典的键值对items()方法 字典操作增加键值对修改键值对查询键值对get()方法 删除键值对delclear()方法 个人主页&#xff1a;丷从心 系列专栏&#xff1a;…...

2024HW --> 安全产品 Powershell无文件落地攻击

在HW中&#xff0c;除了了解中间件&#xff0c;web漏洞&#xff0c;这些攻击的手法&#xff0c;还得了解应急响应&#xff0c;安全产品&#xff0c;入侵排查&#xff0c;溯源反制...... 那么今天&#xff0c;就来说一下安全产品&#xff08;安全公司我就不说了&#xff0c;这个…...

力扣哈哈哈哈

public class MyStack {int top;Queue<Integer> q1;Queue<Integer> q2;public MyStack() {q1new LinkedList<Integer>();q2new LinkedList<Integer>();}public void push(int x) {q2.offer(x);//offer是入队方法while (!q1.isEmpty()){q2.offer(q1.pol…...

RUM 最佳实践-视觉稳定性的探索与实践

写在前面的话 在当今数字时代&#xff0c;网页的视觉稳定性对于提供良好的用户体验至关重要。其中一个衡量视觉稳定性的关键指标就是累积布局偏移&#xff08;Cumulative Layout Shift&#xff0c;简称 CLS&#xff09;。CLS 作为 Web Vitals 指标之一&#xff0c;它衡量的是网…...

PostgreSQL的学习心得和知识总结(一百三十八)|深入理解PostgreSQL数据库之Protocol message构造和解析逻辑

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《PostgreSQL数据库内核分析》 2、参考书籍&#xff1a;《数据库事务处理的艺术&#xff1a;事务管理与并发控制》 3、PostgreSQL数据库仓库…...

爬虫开发教程

一、爬虫概述 爬虫&#xff08;也称为网络爬虫或蜘蛛&#xff09;是一种自动化程序&#xff0c;能够模拟人类在互联网上浏览和抓取数据的行为。它通过发送HTTP请求&#xff0c;获取网页的HTML代码&#xff0c;然后解析这些代码以提取有用的数据。爬虫在数据分析、价格监测、竞…...

【Python】高级进阶(专版提升3)

Python 1 程序结构1.1 模块 Module1.1.1 定义1.1.2 作用1.1.3 导入1.1.3.1 import1.1.3.2 from import 1.1.4 模块变量1.1.5 加载过程1.1.6 分类 1.2 包package1.2.1 定义1.2.2 作用1.2.3 导入1.1.3.1 import1.1.3.2 from import 2 异常处理Error2.1 异常2.2 处理 3 迭代3.1 可…...

LeetCode 1378、1277、2944

1378 二级排序&#xff0c;compare函数必须是static的 class Solution { public:struct node {int val;int priority;};static bool compare(const node &n1, const node &n2) {if (n1.priority n2.priority) {return n1.val < n2.val;}return n1.priority < n…...

【缓存常见问题】

在使用缓存时特别是在高并发场景下会遇到很多问题&#xff0c;常用的问题有缓存穿透、缓存击穿、缓存雪崩以及缓存一致性问题。 1、缓存穿透 首先&#xff0c;什么是缓存穿透呢&#xff1f; 缓存穿透是指请求一个不存在的数据&#xff0c;缓存层和数据库层都没有这个数据&…...

Python爬取猫眼电影票房 + 数据可视化

目录 主角查看与分析 爬取可视化分析猫眼电影上座率前10分析猫眼电影票房场均人次前10分析猫眼电影票票房占比分析 主角查看与分析 爬取 对猫眼电影票房进行爬取&#xff0c;首先我们打开猫眼 接着我们想要进行数据抓包&#xff0c;就要看网站的具体内容&#xff0c;通过按F12…...

Spring Boot深度解析:是什么、为何使用及其优势所在

在Java企业级应用开发的漫长历史中&#xff0c;Spring框架以其卓越的依赖注入和面向切面编程的能力&#xff0c;赢得了广大开发者的青睐。然而&#xff0c;随着技术的不断进步和项目的日益复杂&#xff0c;传统的Spring应用开发流程逐渐显得繁琐和低效。为了解决这一问题&#…...

面向对象——类与对象

文章目录 类与对象构造函数、析构函数get/set方法函数&#xff1a;类内声明、类外定义static 类与对象 #include<iostream> #include<string> using namespace std; /* 类与对象 */ class Person{public:string name;// 固有属性&#xff0c;成员变量 int age;pu…...

Golang的[]interface{}为什么不能接收[]int?

在 Go 中&#xff0c;[]interface{} 和 []int 是两种不同的类型&#xff0c;虽然它们的底层数据结构都是切片&#xff0c;但是它们的元素类型不同。[]interface{} 是一个空接口切片&#xff0c;可以容纳任意类型的元素&#xff0c;而 []int 是一个整数切片&#xff0c;只能容纳…...

重启服务器或重启docker,导致emqx的Dashboard的密码重置为public

最近在项目中突然发现重启服务器,或者重启docker 修改好的emqx的Dashboard的密码重置为public 技术博客 http://idea.coderyj.com/ 1.解决办法就是固定 emqx的节点 # 拉取镜像 docker pull emqx/emqx# 创建目录&#xff0c;进行目录挂载 mkdir -p /docker/emqx/{etc,lib,data,…...

就业班 第三阶段(ansible) 2401--4.16 day2 ansible2 剧本+角色

六、Ansible playbook 简介 playbook 是 ansible 用于配置&#xff0c;部署&#xff0c;和管理被控节点的剧本。   通过 playbook 的详细描述&#xff0c;执行其中的一系列 tasks &#xff0c;可以让远端主机达到预期的状态。playbook 就像 Ansible 控制器给被控节点列出的的…...

常用的过滤网站扫描网站攻击的路径是那些,比如:/etc/passwd等

网站攻击中经常被尝试的路径主要包括利用漏洞获取敏感文件、执行系统命令或者注入恶意代码的尝试。以下是一些常见的被攻击者尝试访问的路径和文件&#xff0c;这些通常在网络入侵检测系统&#xff08;IDS&#xff09;和网络防火墙的过滤规则中被特别关注&#xff1a; 系统文件…...

考研数学|《1800》《660》《880》如何选择和搭配?(附资料分享)

直接说结论&#xff1a;基础不好先做1800、强化之前660&#xff0c;强化可选880/1000题。 首先&#xff0c;传统习题册存在的一个问题是题量较大&#xff0c;但难度波动较大。《汤家凤1800》和《张宇1000》题量庞大&#xff0c;但有些题目难度不够平衡&#xff0c;有些过于简单…...

论文笔记:Are Human-generated Demonstrations Necessary for In-context Learning?

iclr 2024 reviewer 评分 6668 1 intro 大型语言模型&#xff08;LLMs&#xff09;已显示出在上下文中学习的能力 给定几个带注释的示例作为演示&#xff0c;LLMs 能够为新的测试输入生成输出然而&#xff0c;现行的上下文学习&#xff08;ICL&#xff09;范式仍存在以下明显…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...