LLM理解v1
答疑
什么是知识库?
LLM(Large Language Models,大型语言模型)如GPT系列,通常是基于海量的文本数据进行训练的。它们通过分析和理解这些数据来生成回答、撰写文章、解决问题等。当我们提到LLM的“本地知识库”时,我们通常指的是模型在训练过程中内嵌(或“学习”)的知识和信息。
这里的“本地”并不是指物理存储的位置,而是指知识直接嵌入在模型的参数中,这些参数通过训练过程中对大量文本数据的学习而得到。这意味着,当LLM生成回答时,并不是从某个外部数据库或互联网上实时检索信息,而是依赖于它在训练阶段“学到”的、存储在其庞大参数集中的知识。
本地知识库的特点:
-
广泛性:LLM的本地知识库覆盖了其训练数据中存在的广泛主题和领域。这包括科学、文学、历史、日常知识等。
-
静态性:一旦训练完成,模型的知识库是静态的,即模型无法获取其训练数据截止日期之后的新信息或事件。
-
隐式性:这些知识并不是以数据库条目或明确的事实形式存在,而是隐式地嵌入在模型的权重和参数中,通过模型生成的文本间接地表达出来。
本地知识库的应用:
- 信息检索:尽管LLM不能直接访问互联网,但它们可以提供对其训练数据中包含的信息的总结和解释。
- 文本生成:利用其本地知识库,LLM可以生成内容丰富、信息准确的文本,包括文章、故事、解释等。
- 问题解答:对于用户的查询,LLM可以依赖其本地知识库提供答案,尤其是对于历史或普遍知识的问题。
限制:
- 时效性:LLM的知识库可能不包括最新的事件、发现或趋势,因为它仅限于训练数据截止日期的知识。
- 准确性:LLM的回答可能受限于其训练数据的质量和范围,有时可能会产生错误或偏见。
综上所述,LLM的本地知识库是指模型通过训练学习到的、嵌入在其参数中的广泛知识和信息。尽管存在时效性和准确性的限制,这些知识库仍然使LLM成为了强大的文本生成和信息处理工具。
什么是RAG?
在LLM(Large Language Models,大型语言模型)的领域中,RAG代表“Retrieval-Augmented Generation”,即“检索增强生成”。RAG是一种结合了检索(Retrieval)和生成(Generation)的机制,用于提升语言模型在特定任务上的表现,特别是那些需要广泛背景知识的任务。
RAG的工作原理:
-
检索阶段:当模型接收到一个问题或查询时,它首先会在一个大型的文档数据库中检索相关的信息。这个数据库可以是维基百科、书籍、文章或其他任何形式的文档集合。
-
生成阶段:然后,模型将检索到的文档作为上下文信息,结合原始的问题或查询,生成一个回答或者继续进行文本生成。
RAG的特点:
-
信息丰富:通过检索相关的文档,RAG模型能够利用比传统LLM更丰富的信息来生成回答,这些信息可能超出了模型本地知识库的范围。
-
动态更新:与LLM的静态本地知识库不同,RAG模型可以动态地从最新的文档集合中检索信息,这意味着它能够访问到模型训练截止日期之后的内容。
-
准确性提升:RAG模型在生成答案时,由于有了检索到的具体文档作为参考,其回答的准确性和相关性往往会得到提升。
RAG的应用:
-
问答系统:RAG模型特别适用于问答系统,因为它们可以检索到特定问题的相关信息,然后生成精确的答案。
-
内容推荐:RAG可以用于内容推荐系统,通过检索用户可能感兴趣的相关内容来生成个性化的建议。
-
知识密集型任务:任何需要大量特定知识的任务,如撰写专业文章、法律文件分析等,RAG都能发挥其优势。
RAG的限制:
-
检索依赖性:RAG模型的性能很大程度上依赖于检索阶段的效果,如果检索到的信息不准确或不相关,生成的结果也会受到影响。
-
处理时间:由于需要进行额外的检索步骤,RAG模型在生成回答时可能比纯粹的生成模型要慢。
-
资源消耗:检索阶段需要访问和处理大量文档,这可能需要更多的计算资源和存储空间。
RAG是一个在NLP(自然语言处理)领域中相对较新的概念,它展示了如何通过结合检索和生成来提升语言模型在特定任务上的表现。
大模型需要训练吗?
大型语言模型(LLMs)如OpenAI的GPT系列在部署之前确实需要经过训练。训练是一个涉及大量数据和计算资源的过程,旨在使模型能够理解和生成自然语言。
部署之后就不用了,像我们平时用的问答都不需要训练。
如果想用大模型来解决特定业务场景的问答呢?
相关文章:
LLM理解v1
答疑 什么是知识库? LLM(Large Language Models,大型语言模型)如GPT系列,通常是基于海量的文本数据进行训练的。它们通过分析和理解这些数据来生成回答、撰写文章、解决问题等。当我们提到LLM的“本地知识库”时&…...
ubuntu 22.04 -- cmake安装
安装方式一:源码安装 1、下载安装包 官网下载:下载链接:Download CMake 也可以使用命令行下载 wget https://github.com/Kitware/CMake/releases/download/v3.26.5/cmake-3.26.5.tar.gz2、解压并安装 # 1、解压 tar -zxvf cmake-3.26.5.…...
字符串算法题(第二十四天)
344. 反转字符串 题目 编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。 不要给另外的数组分配额外的空间,你必须**原地修改输入数组**、使用 O(1) 的额外空间解决这一问题。 示例 1: 输入࿱…...
【Linux】应用层协议序列化和反序列化
欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:题目解析 🌎推荐文章:C【智能指针】 前言 在正式代码开始前,会有一些前提知识引入 目录 👉🏻序列…...
使用Canal同步MySQL 8到ES中小白配置教程
🚀 使用Canal同步MySQL 8到ES中小白配置教程 🚀 文章目录 🚀 使用Canal同步MySQL 8到ES中小白配置教程 🚀**摘要****引言****正文**📘 第1章:初识Canal1.1 Canal概述1.2 工作原理解析 📘 第2章&…...
关于部署ELK和EFLK的相关知识
文章目录 一、ELK日志分析系统1、ELK简介1.2 ElasticSearch1.3 Logstash1.4 Kibana(展示数据可视化界面)1.5 Filebeat 2、使用ELK的原因3、完整日志系统的基本特征4、ELK的工作原理 二、部署ELK日志分析系统1、服务器配置2、关闭防火墙3、ELK ElasticSea…...
实验室信息系统源码 saas模式java+.Net Core版开发的云LIS系统全套源码可二次开发有演示
实验室信息系统源码 saas模式java.Net Core版开发的云LIS系统全套源码可二次开发有演示 一、技术框架 技术架构:Asp.NET CORE 3.1 MVC SQLserver Redis等 开发语言:C# 6.0、JavaScript 前端框架:JQuery、EasyUI、Bootstrap 后端框架&am…...
PCB---Design Entry cis 绘图 导出
修改纸张大小: 画图前准备:导入 画图: 习惯: 电源朝上 地朝下 配置pbc_footprint编号: 都配置好编号就可以导出了 导出:...
vue 一键更换主题颜色
这里提供简单的实现步骤,具体看自己怎么加到项目中 我展示的是vue2 vue3同理 在 App.vue 添加 入口处直接修改 #app { // 定义的全局修改颜色变量--themeColor:#008cff; } // 组件某些背景颜色需要跟着一起改变,其他也是同理 /deep/ .ant-btn-primar…...
WebKit内核游览器
WebKit内核游览器 基础概念游览器引擎Chromium 浏览器架构Webkit 资源加载这里就不得不提到http超文本传输协议这个概念了: 游览器多线程HTML 解析总结 基础概念 百度百科介绍 WebKit 是一个开源的浏览器引擎,与之相对应的引擎有Gecko(Mozil…...
Qt 拖放功能详解:理论与实践并举的深度指南
拖放(Drag and Drop)作为一种直观且高效的用户交互方式,在现代图形用户界面中扮演着重要角色。Qt 框架提供了完善的拖放支持,允许开发者在应用程序中轻松实现这一功能。本篇博文将详细阐述Qt拖放机制的工作原理,结合详…...
Springboot+Vue项目-基于Java+MySQL的企业客户管理系统(附源码+演示视频+LW)
大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:Java毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计 &…...
【Linux学习】Linux指令(四)
文章标题 🚀zip/unzip指令:🚀tar指令(重要):🚀uname –r指令:🚀关机指令🚀几个常用操作 🚀zip/unzip指令: zip 与 unzip的安装 yum i…...
阿里云服务器 使用Certbot申请免费 HTTPS 证书及自动续期
前言 Certbot是一款免费且开源的自动化安全证书管理工具,由电子前沿基金会(EFF)开发和维护,是在Linux、Apache和Nginx服务器上配置和管理SSL/TLS证书的一种机制。Certbot可以自动完成域名的认证并安装证书。 一、 安装软件 1.1…...
统一SQL-number/decimal/dec/numeric转换
统一SQL介绍 https://www.light-pg.com/docs/LTSQL/current/index.html 源和目标 源数据库:Oracle 目标数据库:Postgresql,TDSQL-MySQL,达梦8,LightDB-Oracle 操作目标 通过统一SQL,将Oracle中的numb…...
软件测试入门学习笔记
系统测试流程规范 一.研发模型 1.瀑布模型 从可行性研究(或系统分析)开始,需求 2.增量迭代模型 3.敏捷开发模型 二.质量模型...
31. 下一个排列
题目描述 整数数组的一个排列 就是将其所有成员以序列或线性顺序排列。 例如,arr [1,2,3] ,以下这些都可以视作 arr 的排列:[1,2,3]、[1,3,2]、[3,1,2]、[2,3,1] 。 整数数组的下一个排列是指其整数的下一个字典序更大的排列。更正式地&…...
Android笔记: mkdirs不生效失败
Manifest已经配置权限,代码中也动态获取权限,mkdirs一直返回false File.mkdirs()方法创建文件夹失败 1、动态申请读写权限 <!--SDCard写权限--> <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" /> <!--SDCard读权…...
需要添加的硬币的最小数量(Lc2952)——贪心+构造
给你一个下标从 0 开始的整数数组 coins,表示可用的硬币的面值,以及一个整数 target 。 如果存在某个 coins 的子序列总和为 x,那么整数 x 就是一个 可取得的金额 。 返回需要添加到数组中的 任意面值 硬币的 最小数量 ,使范围 …...
军工保密资质介绍及申请要求
军工保密资质介绍 军工保密资质是指国家对从事军工研发、生产、销售等活动的企事业单位进行的一种资质认证。该资质的核心目标是保护国家军事机密和军事技术秘密,确保国家安全和国防利益。军工保密资质的认证标准非常严格,涉及企业的安全管理、技术保密…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
spring Security对RBAC及其ABAC的支持使用
RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型,它将权限分配给角色,再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...
