文献速递:深度学习医学影像心脏疾病检测与诊断--从SPECT/CT衰减图中深度学习冠状动脉钙化评分提高了对重大不良心脏事件的预测
Title
题目
Deep Learning Coronary Artery Calcium Scores from SPECT/CT Attenuation Maps Improve Prediction of Major Adverse Cardiac Events
从SPECT/CT衰减图中深度学习冠状动脉钙化评分提高了对重大不良心脏事件的预测
01
文献速递介绍
低剂量非门控CT衰减校正(CTAC)扫描常常在SPECT/CT心肌灌注成像中获取。尽管CTAC的图像质量特征上较低,但深度学习(DL)可以潜在地从这些扫描中自动量化冠状动脉钙化(CAC)。我们评估了使用DL模型得出的CAC量化结果,包括与专家注释的相关性以及与主要不良心血管事件(MACE)的关联。方法:我们训练了一个卷积长短期记忆DL模型,使用6608个研究(2个中心)自动量化CTAC扫描上的CAC,并在一个外部患者队列中评估了该模型,该队列中的患者没有已知的冠状动脉疾病(n = 2271),并在另一个中心获取。我们评估了DL和专家注释的CAC分数之间的一致性。我们还评估了DL自动获取的CAC类别(0、1-100、101-400或>400)与MACE(死亡、血管重建、心肌梗死或不稳定性心绞痛)之间的关联,这些分数是由经验丰富的读者手动推导出来的,并使用多变量Cox模型(根据年龄、性别、既往病史、灌注和射血分数进行调整)和净再分类指数进行评估。结果:在外部测试人群中,DL CAC为0的患者有908例(40.0%),1-100的有596例(26.2%),100-400的有354例(15.6%),400以上的有413例(18.2%)。DL CAC与专家注释的CAC类别一致性较好(线性加权k值为0.80),但DL CAC的获取时间少于2秒,而专家CAC约为2.5分钟。与CAC为零相比,DL CAC类别是MACE的独立危险因素,其风险比分别为CAC为1-100(2.20;95% CI,1.54-3.14;P <0.001)、CAC为101-400(4.58;95% CI,3.23-6.48;P <0.001)和CAC为400以上(5.92;95% CI,4.27-8.22;P <0.001)。总体而言,DL CAC的净再分类指数为0.494,与专家注释的CAC(0.503)类似。结论:来自SPECT/CT衰减校正图的DL CAC与专家CAC注释相符,并提供类似的风险分层,但可以自动获取。与仅使用SPECT心肌灌注相比,DL CAC分数改善了相当比例的患者的分类。
Method
方法
Patients who underwent SPECT/CT MPI with CTAC at 1 of 2 cen ters (Yale and Cardiovascular Imaging Technologies) were used to train the convLSTM. Patients who underwent SPECT/CT MPI from a third center (University of Calgary) were used as an external testing cohort. Patients without CTAC were excluded. For external testing, patients with a history of coronary artery disease (n 5 673), defined as previousmyocardial infarction or revascularization with either percutaneous coronary intervention or coronary artery bypass grafting (15), were excluded.Details of the clinical data acquisition are provided in the supplemental materials (available at http://jnm.snmjournals.org). The study protocolcomplied with the Declaration of Helsinki. The study was approved bythe institutional review board at all sites. To the extent allowed by datasharing agreements and institutional review board protocols, data andcodes used in this article will be shared on written request.
研究人群
接受了SPECT/CT MPI与CTAC扫描的患者,其中1中心为耶鲁大学,另1中心为心血管影像技术中心,用于训练convLSTM模型。来自第三个中心(卡尔加里大学)接受了SPECT/CT MPI的患者则用作外部测试队列。没有进行CTAC扫描的患者被排除在外。在外部测试中,具有冠状动脉疾病史(n = 673)的患者被排除,其定义为先前的心肌梗死或经皮冠状动脉介入术或冠状动脉旁路移植术进行过血管重建(15)。临床数据采集的详细信息在补充材料中提供(可在http://jnm.snmjournals.org找到)。该研究方案符合《赫尔辛基宣言》。该研究得到了所有研究机构审查委员会的批准。根据数据共享协议和机构审查委员会的协议,本文中使用的数据和代码将根据书面请求进行分享。
Conclusion
结论
DL CAC derived from SPECT/CT attenuation maps agrees wellwith expert CAC annotations. DL and expert annotated CAC areassociated with MACE, but DL scores can be obtained automatically in a few seconds. DL CAC scores can be quantified automatically after SPECT/CT MPI, without impeding clinical workflow,to improve classification of a significant proportion of patients.
来自SPECT/CT衰减图的DL CAC与专家注释的CAC一致。DL和专家注释的CAC与MACE相关联,但DL分数可以在几秒钟内自动获得。在SPECT/CT MPI后,DL CAC分数可以自动量化,不会妨碍临床工作流程,从而改善相当比例患者的分类。
Figure
图
FIGURE 1. Outline of model architecture. ConvLSTM includes network trained to segment CAC, as well as second network for segmentation of heart, which limits CAC scoring. Softmax argmax function normalizes output of network to expected probabilities. Model identifies coronary calcium(red) and noncoronary calcium (green) within heart mask.
图1. 模型架构概述。ConvLSTM包括用于分割CAC的网络,以及用于限制CAC评分的心脏分割的第二个网络。Softmax argmax函数将网络的输出归一化为预期的概率。模型在心脏掩模内识别冠状动脉钙化(红色)和非冠状动脉钙化(绿色)。
FIGURE 2. Examples of expert scores compared with DL CAC scores. Model identifies coronary calcium (red) and noncoronary calcium (green). In case 1, expert and DL annotations identified simi lar left circumflex CAC as well as ascending aorta calcium. No CAC was identified by either expertor DL scoring in case 2. In case 3, expert and DL annotations identified similar right coronary arteryCAC as well as mitral annular calcification. BMI 5 body mass index.
图2. 专家评分与DL CAC评分的示例比较。模型识别冠状动脉钙化(红色)和非冠状动脉钙化(绿色)。在案例1中,专家和DL注释识别了类似的左回旋支CAC以及升主动脉钙化。在案例2中,专家或DL评分均未识别到CAC。在案例3中,专家和DL注释识别了类似的右冠状动脉CAC以及二尖瓣环钙化。BMI表示身体质量指数。
FIGURE 3. Concordance matrix between DL and expert CAC categories in external testing population.
图3. 外部测试人群中DL和专家CAC类别之间的一致性矩阵。
FIGURE 4. Kaplan–Meier survival curves for MACE. Increasing CAC category was associated with increasing risk of MACE for DL and expert annotated CAC scores on SPECT/CT attenuation maps.
图4.Kaplan-Meier生存曲线的MACE。在SPECT/CT衰减图上,DL和专家注释的CAC分数与MACE的风险增加相关。
FIGURE 5. Results of net-reclassification analysis. We assessed addition of CAC categories to full multivariable model outlined in Table 2.
图5. 净再分类分析结果。我们评估了将CAC类别添加到表2中概述的完整多变量模型中的效果。
Table
表
TABLE 1 External Testing: Patient Characteristics According to CAC Category Determined by Deep-Learning Model
表1 外部测试:根据深度学习模型确定的CAC类别的患者特征
TABLE 2 Associations with MACE
表2 MACE相关性
相关文章:

文献速递:深度学习医学影像心脏疾病检测与诊断--从SPECT/CT衰减图中深度学习冠状动脉钙化评分提高了对重大不良心脏事件的预测
Title 题目 Deep Learning Coronary Artery Calcium Scores from SPECT/CT Attenuation Maps Improve Prediction of Major Adverse Cardiac Events 从SPECT/CT衰减图中深度学习冠状动脉钙化评分提高了对重大不良心脏事件的预测 01 文献速递介绍 低剂量非门控CT衰减校正&am…...

Java多线程:常见的线程的创建方法及Thread类详解
目录 一.并发编程相关概念 线程与进程 多线程 Java中线程的状态 二.线程的创建方法 方法一:继承Thread类 方法二:实现Runnable接口 其他方法 三.Thread类详解 Thread常见构造方法 Thread常见属性 Thread常见方法 start() 与 run() sleep(…...

一招搞定生产管理
劳动力成本上升,原材料价格上涨,企业生产成本逐年增加,市场竞争越来越激烈,传统的中小制造企业面临着巨大的挑战。 企业的数字化转型如今成为炙手可热的高频词语,越来越多的中小制造企业已经开始上云,实践SaaS模式的生产管理系统…...

学习CSS3,实现红色心形loading特效
试想一下,如果你的网站在加载过程中,loading图由一个老旧的菊花转动图片,变为一个红色的心形loading特效,那该有多炫酷啊。 目录 实现思路 初始化HTML部分 延迟动画是重点 设定动画效果 完整源代码 最后 实现思路 每个…...

深度学习之基于Matlab神经网络的活体人脸和视频人脸识别系统
欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景 人脸识别技术作为生物识别技术的一种,近年来得到了广泛的关注和应用。与传统的身份认证方…...

充电桩测试:负载箱的重要性
随着电动汽车的普及,充电桩的需求也在不断增加。为了保证充电桩的安全、稳定和高效运行,对其进行严格的测试是必不可少的。在充电桩测试过程中,负载箱作为一种重要的测试设备,对于评估充电桩的性能和可靠性具有重要意义。 负载箱可…...
贪心算法、Dijkstra和A*类路径搜索算法
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 TODO:写完再整理 文章目录 系列文章目录前言系列文章目录前言1.贪心算法、Dijkstra和A*类路径搜索算法(1)greedy best frist search贪心算法(仅仅考虑启发式代价)1.核心思想2.构造启发式猜…...

Debian是什么?有哪些常用命令
目录 一、Debian是什么? 二、Debian常用命令 三、Debian和CentOS的区别 四、Debian和CentOS的优缺点 五、Debian和CentOS的运用场景 一、Debian是什么? Debian是一种流行的开源Linux操作系统。 Debian是一个以Linux内核为基础的操…...

万兴PDF专家 PDFelement Pro v10.3.8 破姐版!
🧑💻万兴PDF专家 PDFelement Pro v10.3.8 破姐版 (https://docs.qq.com/sheet/DRVVxTHJ3RXJFVHVr)...
Ubuntu22.04 私钥登录
1. 背景 以前一直使用秘钥登录Linux,最近新装了一台Ubuntu 22.04,照旧部署公钥,使用私钥登录,结果SecureCRT 登录没有问题,使用Xshell登录一直报“所选的用户密钥未在远程主机上注册,请再试一次”。然后各种试&#x…...

Java_JVM_JVMs
JVM 官方文档说明文档目录 官方文档 JVM Specification 说明 以Java SE 17为标准 文档目录 2:JVM 结构 class文件数据类型 基本数据类型引用数据类型 运行时数据区 栈帧 其他内容 对象的表示浮点数运算特殊方法 初始化方法【实例、类】多态方法 3ÿ…...

Linux系统编程之基本指令
零、Linux发展史 1、诞生 1991年10月5日,赫尔辛基大学的一名研究生Linus Benedict Torvalds在一个Usenet新闻组 (comp.os.minix)中宣布他编制出了一种类似UNIX的小操作系统,叫Linux。新的操作系统是受到另一个UNIX的小操作系统—…...

[1702]java旅游资源网上填报系统Myeclipse开发mysql数据库web结构java编程计算机网页项目
一、源码特点 java旅游资源网上填报系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql…...
【Flask 系统教程 3】请求与响应
Flask 是一个灵活而强大的 Web 框架,而请求与响应则是构建 Web 应用的核心组成部分。在本文中,我们将探讨 Flask 中请求与响应的各种用法,包括不同的请求方法、重定向、响应对象、获取查询参数以及文件上传等。 请求 在 Flask 中࿰…...

jsp校园商城派送系统Myeclipse开发mysql数据库web结构java编程计算机网页项目
一、源码特点 JSP 校园商城派送系统 是一套完善的web设计系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统采用serlvetdaobean mvc 模式,系统主要采用B/S模式 开发。开发环境为TOMCAT7.0,Myeclipse8.…...

【Linux】System V 共享内存
文章目录 1. 共享内存示意图2. 共享内存数据结构3. 共享内存函数shmgetshmatshmdtshmctl 4. 实例代码测试共享内存5. 共享内存相关命令6. System V 消息队列(了解)7. System V 信号量(了解) 共享内存区是最快的 IPC 形式。一旦这样…...

拼多多标准推广怎么玩
拼多多标准推广的玩法主要包括以下方面: 拼多多推广可以使用3an推客。3an推客(CPS模式)给商家提供的营销工具,由商家自主设置佣金比例,激励推广者去帮助商家推广商品链接,按最终有效交易金额支付佣金&…...

HFSS学习-day2-T形波导的优化设计
入门实例–T形波导的内场分析和优化设计 HFSS--此实例优化设计 优化设计要求1. 定义输出变量Power31、Power21、和Power11,表示Port3、Port2、Port1的输出功率2.参数扫描分析添加扫描变量和输出变量进行一个小设置添加输出变量进行扫描分析 3. 优化设计,…...

贪吃蛇小游戏(c语言)
1.效果展示 屏幕录制 2024-04-28 205129 2.基本功能 • 贪吃蛇地图绘制 • 蛇吃食物的功能 (上、下、左、右方键控制蛇的动作) • 蛇撞墙死亡 • 蛇撞自身死亡 • 计算得分 • 蛇身加速、减速 • 暂停游戏 3.技术要点 C语言函数、枚举、结构…...

多商户Docker Supervisor进程管理器部署
Dockerfile 根目录下没有Dockerfile的可以复制下面的命令 # 使用基础镜像 FROM leekay0218/crmeb-mer## 复制代码 ## 在本地调试注释掉,使用映射把文件映射进去 #ADD ./ /var/www# 设置工作目录 WORKDIR /var/www# 设置时区为上海 ENV TZAsia/Shanghai RUN ln -sn…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...