当前位置: 首页 > news >正文

题目:线性代数

问题描述:


解题思路:
        列相乘,然后行相加。

        注意点:由于元素数据范围最大为1e6,两个元素相乘乘积最大为1e12,如果元素类型为int则在乘的过程中就会爆炸,所以需要开long long类型。


AC代码:

#include<bits/stdc++.h>
using namespace std;const int N = 1e6 + 9;
long long a[N], b[N], ans = 0;int main()
{int n;cin >> n;for(int i = 1; i <= n; i++)cin >> a[i];for(int j = 1; j <= n; j++)cin >> b[j];for(int i = 1; i <= n; i++){ans += a[i]*b[i];}cout << ans << '\n';return 0;
}

知识点:数据范围

相关文章:

题目:线性代数

问题描述&#xff1a; 解题思路&#xff1a; 列相乘&#xff0c;然后行相加。 注意点&#xff1a;由于元素数据范围最大为1e6&#xff0c;两个元素相乘乘积最大为1e12&#xff0c;如果元素类型为int则在乘的过程中就会爆炸&#xff0c;所以需要开long long类型。 AC代码…...

docker学习笔记3:VmWare CentOS7安装与静态ip配置

文章目录 一、安装CentOS71、下载centos镜像2、安装二、设置静态ip三、xshell连接centos本专栏的docker环境是在centos7里安装,因此首先需要会安装centos虚拟机。 本篇博客介绍如何在vm虚拟机里安装centos7。 一、安装CentOS7 1、下载centos镜像 推荐清华源,下载如下版本 …...

leetcode 547.省份数量

思路&#xff1a;dfs 或者这道题用bfs也是可以的。 这道题有点迷惑性&#xff0c;这里的数组给的是无向图的数组&#xff0c;而并不是地图&#xff0c;这里需要着重注意一下。 而后&#xff0c;这里的状态数组st没必要是二维的&#xff0c;我们并不会去遍历所给的数组&#…...

Qt5 框架学习及应用 — 对象树

Qt 对象树 对象树概念Qt为什么使用对象树 &#xff1f;将对象挂到对象树上 对象树概念 对象树&#xff1a;对于树的概念&#xff0c;相信许多学过数据结构的同学应该都不会陌生。在学习数据结构的时候我们所接触的什么二叉树、多叉树、哈夫曼树、AVL树、再到红黑树、B/B树………...

Ansible自动化运维工具---Playbook

一、playbook playbook是剧本的意思 通过 task 调用 ansible 的模块将多个 play 组织在一 个playbook中运行。 playbook本身由以下各部分组成&#xff1a; Tasks: 任务&#xff0c;即调用模块完成的某操作Variables: 变量Templates: 模板Handlers: 处理器&#xff0c;当某条…...

什么是接口和类?Java中的集合框架有哪些主要接口和类?

Java中的集合框架有哪些主要接口和类&#xff1f; Java中的集合框架&#xff08;Java Collections Framework&#xff09;提供了一套丰富的接口和类&#xff0c;用于存储和操作对象的集合。以下是Java集合框架中的主要接口和类&#xff1a; 主要接口 Collection&#xff1a; 这…...

算法学习笔记(最短路——Bellman-Ford)

B e l l m a n — F o r d Bellman—Ford Bellman—Ford是一种单源最短路径算法&#xff0c;可以用于边权为负的图&#xff0c;但是只能用于小图。 大概过程&#xff1a; 枚举每一条边&#xff0c;更新可以更新的节点&#xff08;起点到自己距离为 0 0 0&#xff0c;从地点开…...

try-catch-finally的省略与springboot

在 Java 中&#xff0c;try-catch 块是用于捕获和处理异常的结构&#xff0c;它可以帮助您在代码中处理可能发生的异常情况。在某些情况下&#xff0c;您可能希望省略 try-catch 块并将异常向上抛出&#xff0c;让调用者处理异常。这种情况通常适用于以下情况&#xff1a; 方法…...

容器Docker:轻量级虚拟化技术解析

引言 随着云计算和虚拟化技术的飞速发展&#xff0c;容器技术以其轻量级、高效、可移植的特性&#xff0c;逐渐成为了软件开发和部署的新宠。在众多容器技术中&#xff0c;Docker以其简单易用、功能强大的特点&#xff0c;赢得了广泛的关注和应用。本文将全面介绍Docker的基本概…...

windows 系统中cuda 12.1 环境安装

文章目录 1. 安装cuda 12.11.1 下载1.2 安装 cuda1.2.1 安装步骤1.2.2 环境变量安装1.3 安装cuDNN1.3.1 安装1.3.2 cuDNN配置验证2. anaconda 安装2.1 安装2.2 环境变量配置3. 报错解决1. 安装cuda 12.1 首先通过nvidia-smi 查看可以安装的CUDA最高版本...

字节和旷视提出HiDiffusion,无需训练,只需要一行代码就可以提高 SD 生成图像的清晰度和生成速度。代码已开源。

字节和旷视提出HiDiffusion&#xff0c;无需训练&#xff0c;只需要一行代码就可以提高 SD 生成图像的清晰度和生成速度。代码已开源。 支持将图像生成的分辨率提高至40964096&#xff0c;同时将图像生成速度提升1.5至6倍。 支持所有 SD 模型同时也支持 SD 模型的下游模型&…...

linux下dd制作启动U盘

dd命令是比较推荐的一种Linux环境中制作U盘启动盘的方式&#xff0c;无需安装额外的工具&#xff0c;基本上所有Linux发行版都集成了这个命令。 1、插入U盘&#xff1b; 2、打开终端&#xff1b; 3、确认U盘路径&#xff0c;在终端中输入&#xff1a;sudo fdisk -l 例如&am…...

springboot整合mybatis配置多数据源(mysql/oracle)

目录 前言导入依赖坐标创建mysql/oracle数据源配置类MySQLDataSourceConfigOracleDataSourceConfig application.yml配置文件配置mysql/oracle数据源编写Mapper接口编写Book实体类编写测试类 前言 springboot整合mybatis配置多数据源&#xff0c;可以都是mysql数据源&#xff…...

练习项目后端代码解析切面篇(Aspect)

前言 之前注解篇时我说&#xff0c;通常情况下一个自定义注解一般对应一个切面&#xff0c;虽然项目里的切面和注解个数相同&#xff0c;但是好像有一个名字看起来并不对应&#xff0c;无所谓&#xff0c;先看了再说。 ExceptionLogAspect切面 我在里面做了具体注释&#x…...

TypeScript常见面试题第六节

题目二十六:TypeScript 中的装饰器? 一、讲解视频 TS面试题二十六:TypeScript 中的可选链? 二、题目解析 本题目考察可选链的相关知识,可选链是比较新的一个语法,是一种访问嵌套对象属性的安全的方式。即使中间的属性不存在,也不会出现错误。如果可选链 ?. 前面的值为…...

LeetCode 面试经典150题 228.汇总区间

题目&#xff1a; 给定一个 无重复元素 的 有序 整数数组 nums 。 返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说&#xff0c;nums 的每个元素都恰好被某个区间范围所覆盖&#xff0c;并且不存在属于某个范围但不属于 nums 的数字 x 。 列表中的每个区…...

大数据分析入门10分钟快速了解SQL

SQL是什么&#xff1f; SQL全称Structured Query Language(结构化查询语言”) 为什么要用SQL&#xff1f; SQL通用 常见的表格分析操作&#xff0c;Excel也能做&#xff0c;为什么不用呢&#xff1f; 因为处理上亿行大数据时&#xff0c;Excel并不够用。 而常见的大数据引…...

设置多用户远程登录windows server服务器

##设置多用户远程登录windows server服务器 ###1、远程登录windows server 2016 运行—>mstsc—>远程IP地址—>用户和密码 2、远程windows服务器设置多用户策略 运行—>gpedit.msc->计算机配置—管理模板—windows组件—远程桌面服务—远程桌面会话主机----连…...

一文了解栈

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、栈是什么&#xff1f;二、栈的实现思路1.顺序表实现2.单链表实现3.双向链表实现 三、接口函数的实现1.栈的定义2.栈的初始化3.栈的销毁4.入栈5.出栈6.返回栈…...

C语言----汉诺塔问题

1.什么是汉诺塔问题 简单来说&#xff0c;就是有三个柱子&#xff0c;分别为A柱&#xff0c;B柱&#xff0c;C柱。其中A柱从上往下存放着从小到大的圆盘&#xff0c;我们需要借助B柱和C柱&#xff0c;将A柱上的所有圆盘转移到C柱上&#xff0c;并且一次只能移动一个圆盘&#…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...