当前位置: 首页 > news >正文

题目:线性代数

问题描述:


解题思路:
        列相乘,然后行相加。

        注意点:由于元素数据范围最大为1e6,两个元素相乘乘积最大为1e12,如果元素类型为int则在乘的过程中就会爆炸,所以需要开long long类型。


AC代码:

#include<bits/stdc++.h>
using namespace std;const int N = 1e6 + 9;
long long a[N], b[N], ans = 0;int main()
{int n;cin >> n;for(int i = 1; i <= n; i++)cin >> a[i];for(int j = 1; j <= n; j++)cin >> b[j];for(int i = 1; i <= n; i++){ans += a[i]*b[i];}cout << ans << '\n';return 0;
}

知识点:数据范围

相关文章:

题目:线性代数

问题描述&#xff1a; 解题思路&#xff1a; 列相乘&#xff0c;然后行相加。 注意点&#xff1a;由于元素数据范围最大为1e6&#xff0c;两个元素相乘乘积最大为1e12&#xff0c;如果元素类型为int则在乘的过程中就会爆炸&#xff0c;所以需要开long long类型。 AC代码…...

docker学习笔记3:VmWare CentOS7安装与静态ip配置

文章目录 一、安装CentOS71、下载centos镜像2、安装二、设置静态ip三、xshell连接centos本专栏的docker环境是在centos7里安装,因此首先需要会安装centos虚拟机。 本篇博客介绍如何在vm虚拟机里安装centos7。 一、安装CentOS7 1、下载centos镜像 推荐清华源,下载如下版本 …...

leetcode 547.省份数量

思路&#xff1a;dfs 或者这道题用bfs也是可以的。 这道题有点迷惑性&#xff0c;这里的数组给的是无向图的数组&#xff0c;而并不是地图&#xff0c;这里需要着重注意一下。 而后&#xff0c;这里的状态数组st没必要是二维的&#xff0c;我们并不会去遍历所给的数组&#…...

Qt5 框架学习及应用 — 对象树

Qt 对象树 对象树概念Qt为什么使用对象树 &#xff1f;将对象挂到对象树上 对象树概念 对象树&#xff1a;对于树的概念&#xff0c;相信许多学过数据结构的同学应该都不会陌生。在学习数据结构的时候我们所接触的什么二叉树、多叉树、哈夫曼树、AVL树、再到红黑树、B/B树………...

Ansible自动化运维工具---Playbook

一、playbook playbook是剧本的意思 通过 task 调用 ansible 的模块将多个 play 组织在一 个playbook中运行。 playbook本身由以下各部分组成&#xff1a; Tasks: 任务&#xff0c;即调用模块完成的某操作Variables: 变量Templates: 模板Handlers: 处理器&#xff0c;当某条…...

什么是接口和类?Java中的集合框架有哪些主要接口和类?

Java中的集合框架有哪些主要接口和类&#xff1f; Java中的集合框架&#xff08;Java Collections Framework&#xff09;提供了一套丰富的接口和类&#xff0c;用于存储和操作对象的集合。以下是Java集合框架中的主要接口和类&#xff1a; 主要接口 Collection&#xff1a; 这…...

算法学习笔记(最短路——Bellman-Ford)

B e l l m a n — F o r d Bellman—Ford Bellman—Ford是一种单源最短路径算法&#xff0c;可以用于边权为负的图&#xff0c;但是只能用于小图。 大概过程&#xff1a; 枚举每一条边&#xff0c;更新可以更新的节点&#xff08;起点到自己距离为 0 0 0&#xff0c;从地点开…...

try-catch-finally的省略与springboot

在 Java 中&#xff0c;try-catch 块是用于捕获和处理异常的结构&#xff0c;它可以帮助您在代码中处理可能发生的异常情况。在某些情况下&#xff0c;您可能希望省略 try-catch 块并将异常向上抛出&#xff0c;让调用者处理异常。这种情况通常适用于以下情况&#xff1a; 方法…...

容器Docker:轻量级虚拟化技术解析

引言 随着云计算和虚拟化技术的飞速发展&#xff0c;容器技术以其轻量级、高效、可移植的特性&#xff0c;逐渐成为了软件开发和部署的新宠。在众多容器技术中&#xff0c;Docker以其简单易用、功能强大的特点&#xff0c;赢得了广泛的关注和应用。本文将全面介绍Docker的基本概…...

windows 系统中cuda 12.1 环境安装

文章目录 1. 安装cuda 12.11.1 下载1.2 安装 cuda1.2.1 安装步骤1.2.2 环境变量安装1.3 安装cuDNN1.3.1 安装1.3.2 cuDNN配置验证2. anaconda 安装2.1 安装2.2 环境变量配置3. 报错解决1. 安装cuda 12.1 首先通过nvidia-smi 查看可以安装的CUDA最高版本...

字节和旷视提出HiDiffusion,无需训练,只需要一行代码就可以提高 SD 生成图像的清晰度和生成速度。代码已开源。

字节和旷视提出HiDiffusion&#xff0c;无需训练&#xff0c;只需要一行代码就可以提高 SD 生成图像的清晰度和生成速度。代码已开源。 支持将图像生成的分辨率提高至40964096&#xff0c;同时将图像生成速度提升1.5至6倍。 支持所有 SD 模型同时也支持 SD 模型的下游模型&…...

linux下dd制作启动U盘

dd命令是比较推荐的一种Linux环境中制作U盘启动盘的方式&#xff0c;无需安装额外的工具&#xff0c;基本上所有Linux发行版都集成了这个命令。 1、插入U盘&#xff1b; 2、打开终端&#xff1b; 3、确认U盘路径&#xff0c;在终端中输入&#xff1a;sudo fdisk -l 例如&am…...

springboot整合mybatis配置多数据源(mysql/oracle)

目录 前言导入依赖坐标创建mysql/oracle数据源配置类MySQLDataSourceConfigOracleDataSourceConfig application.yml配置文件配置mysql/oracle数据源编写Mapper接口编写Book实体类编写测试类 前言 springboot整合mybatis配置多数据源&#xff0c;可以都是mysql数据源&#xff…...

练习项目后端代码解析切面篇(Aspect)

前言 之前注解篇时我说&#xff0c;通常情况下一个自定义注解一般对应一个切面&#xff0c;虽然项目里的切面和注解个数相同&#xff0c;但是好像有一个名字看起来并不对应&#xff0c;无所谓&#xff0c;先看了再说。 ExceptionLogAspect切面 我在里面做了具体注释&#x…...

TypeScript常见面试题第六节

题目二十六:TypeScript 中的装饰器? 一、讲解视频 TS面试题二十六:TypeScript 中的可选链? 二、题目解析 本题目考察可选链的相关知识,可选链是比较新的一个语法,是一种访问嵌套对象属性的安全的方式。即使中间的属性不存在,也不会出现错误。如果可选链 ?. 前面的值为…...

LeetCode 面试经典150题 228.汇总区间

题目&#xff1a; 给定一个 无重复元素 的 有序 整数数组 nums 。 返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说&#xff0c;nums 的每个元素都恰好被某个区间范围所覆盖&#xff0c;并且不存在属于某个范围但不属于 nums 的数字 x 。 列表中的每个区…...

大数据分析入门10分钟快速了解SQL

SQL是什么&#xff1f; SQL全称Structured Query Language(结构化查询语言”) 为什么要用SQL&#xff1f; SQL通用 常见的表格分析操作&#xff0c;Excel也能做&#xff0c;为什么不用呢&#xff1f; 因为处理上亿行大数据时&#xff0c;Excel并不够用。 而常见的大数据引…...

设置多用户远程登录windows server服务器

##设置多用户远程登录windows server服务器 ###1、远程登录windows server 2016 运行—>mstsc—>远程IP地址—>用户和密码 2、远程windows服务器设置多用户策略 运行—>gpedit.msc->计算机配置—管理模板—windows组件—远程桌面服务—远程桌面会话主机----连…...

一文了解栈

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、栈是什么&#xff1f;二、栈的实现思路1.顺序表实现2.单链表实现3.双向链表实现 三、接口函数的实现1.栈的定义2.栈的初始化3.栈的销毁4.入栈5.出栈6.返回栈…...

C语言----汉诺塔问题

1.什么是汉诺塔问题 简单来说&#xff0c;就是有三个柱子&#xff0c;分别为A柱&#xff0c;B柱&#xff0c;C柱。其中A柱从上往下存放着从小到大的圆盘&#xff0c;我们需要借助B柱和C柱&#xff0c;将A柱上的所有圆盘转移到C柱上&#xff0c;并且一次只能移动一个圆盘&#…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...