机器学习项目实践-基础知识部分
环境建立
我们做项目第一步就是单独创建一个python环境,Python新的隔离环境
python -m venv ml是在创建一个名为 ml 的虚拟环境,这样系统会自动创建一个文件夹ml,里面包含了Python的基本环境。
.\Scripts\activate是在激活这个虚拟环境,然后再执行pip命令安装其他库。
python -m venv ml的意思是运行venv模块,并把ml作为参数传给venv模块。venv是 Python 的一个内置模块,用于创建虚拟环境。
pip install numpy -i Simple Index
pip install pandas -i Simple Index
pip install matplotlib -i Simple Index
pip install jupyter notebook -i Simple Index
启动jupyter notebook, 进入到你想查看的目录,打开之前需要进入.\Scripts\activate。
Numpy
Numpy是Python的一个很重要的第三方库,很多其他科学计算的第三方库都是以Numpy为基础建立的。
Numpy的一个重要特性是它的数组计算。
import numpy
import numpy as np
from numpy import *
from numpy import array, sin
%pylab 是一个方便的模块,用于在单个名称空间中批量导入 matplotlib.pyplot(用于绘图)和 NumPy(用于数学和处理数组)
%pylab
数组上的数学操作
我们不能直接将列表相加,列表相加就相当于append操作。
a = [1, 2, 3, 4]
a + [1, 1, 1, 1]这样会生成[1, 2, 3, 4, 1, 1, 1, 1]
要先都转换为array数组:
b = np.array([2, 3, 4, 5])
a + b
提取数组中的元素
- 提取第一个元素:a[0]
-
提取前两个元素:a[:2]
-
最后两个元素:a[-2:]
修改数组形状
- 修改
array的形状:a.shape = 2,2 - 或a.reshape(2,2)
aaa = np.array([[[1,2,4],[3,4,5]],[[5,6,7],[7,8,10]]])
这个数组的维度有三个,0、1、2。
aaa.sum(axis= 0)结果:
[[6,8,11],
[10,12,15]]
这是因为axis等于零时,相当于按照零维度求和,相当于两个两行三列的数组求和。
axis等于1时,相当于按照第二个维度求和,就是按每个元素的行求和, 结果:
[[4,6,9],
[12,14,17]]
画图
a = linspace(0, 2*pi, 21)
%precision 3
b = sin(a)%matplotlib inline
plot(a, b)
%matplotlib inline是 Jupyter Notebook 的魔法命令,用于在 Notebook 中内嵌显示绘制的图形。
我们在画图的时候经常遇到中文显示不出来,这也是matplotlib 一直以来的诟病。
我们可以在画图前调库的时候加上两行代码:
from matplotlib import rcParams
rcParams['font.family'] = 'SimHei'
这样问题就解决了。
# plot方法就是在直角坐标系中绘制折线图的方法,绘制折线图的逻辑就是在
# 直角坐标系中绘制点,然后将点连起来
fig = plt.figure(figsize=(10,6))
plt.plot(x, y, marker='o',linestyle='--',c='#CD7F32')
plt.plot(x, y2)
plt.xticks(np.arange(0,11))
# plt.yticks(np.arange(-1,2,0.2))
plt.xlim(0,7)
plt.ylim(1,2)
plt.title("sin & cos函数")
plt.xlabel("x轴")
plt.ylabel("y轴")
plt.show()
当我们不知道某个方法的API时,可以使用?+方法,查看各个参数
相关文章:
机器学习项目实践-基础知识部分
环境建立 我们做项目第一步就是单独创建一个python环境,Python新的隔离环境 创建:python -m venv ml 使用:.\Scripts\activate python -m venv ml 是在创建一个名为 ml 的虚拟环境,这样系统会自动创建一个文件夹ml,…...
CNN卷积神经网络,TensorFlow面试题
目录 CNN卷积神经网络 什么是TensorFlow? 张量是什么 TensorFlow有什么优势?...
Android 官网Ota介绍
构建 OTA 软件包 | Android 开源项目 | Android Open Source Project...
Redis(持久化)
文章目录 1.RDB1.介绍2.RDB执行流程3.持久化配置1.Redis持久化的文件是dbfilename指定的文件2.配置基本介绍1.进入redis配置文件2.搜索dbfilename,此时的dump.rdb就是redis持久化的文件3.搜索dir,每次持久化文件,都会在启动redis的当前目录下…...
基于Flask的岗位就业可视化系统(一)
🌟欢迎来到 我的博客 —— 探索技术的无限可能! 🌟博客的简介(文章目录) 前言 本项目综合了基本数据分析的流程,包括数据采集(爬虫)、数据清洗、数据存储、数据前后端可视化等 推荐…...
嵌入式学习68-C++(运算符重载和虚函数)
知识零碎: cin >> n 相当于scanf C系统提供的6种基本函数 …...
UVA1048/LA3561 Low Cost Air Travel
UVA1048/LA3561 Low Cost Air Travel 题目链接题意输入格式输出格式 分析AC 代码 题目链接 本题是2006年ICPC世界总决赛的A题 题意 很多航空公司都会出售一种联票,要求从头坐,上飞机时上缴机票,可以在中途任何一站下飞机。比如,假…...
学习和分析各种数据结构所要掌握的一个重要知识——CPU的缓存利用率(命中率)
什么是CPU缓存利用率(命中率),我们首先要把内存搞清楚。 硬盘是什么,内存是什么,高速缓存是什么,寄存器又是什么? 我们要储存数据就要运用到上面的东西。首先里面的硬盘是可以无电存储的&#…...
IOS自动化—将WDA打包ipa批量安装驱动
前言 CSDN: ios自动化-Xcode、WebDriverAgent环境部署 ios获取原生系统应用的包 如果Mac电脑没有配置好Xcode相关环境,可以参考以上文章。 必要条件 Mac电脑,OS版本在12.4及以上(低于这个版本无法安装Xcode14,装不了Xcode14就…...
SAP PP学习笔记12 - 评估MRP的运行结果
上一章讲了MRP的概念,参数,配置等内容。 SAP PP学习笔记11 - PP中的MRP相关概念,参数,配置-CSDN博客 本章来讲 MRP跑完之后呢,要怎么评估这个MRP的运行结果。 1,Stock/Requirements List and MRP List 在…...
AndroidStudio的Iguana版的使用
1.AndroidStudio介绍 Android Studio 是用于开发 Android 应用的官方集成开发环境 (IDE)。Android Studio 基于 IntelliJ IDEA 强大的代码编辑器和开发者工具,还提供更多可提高 Android 应用构建效率的功能,例如: 基于 Gradle 的灵活构建系统…...
通过方法引用获取属性名的底层逻辑是什么?
很多小伙伴可能都用过 MyBatis-Plus,这里边我们构造 where 条件的时候,可以直接通过方法引用的方式去指定属性名: LambdaQueryWrapper<Book> qw new LambdaQueryWrapper<>(); qw.eq(Book::getId, 2); List<Book> list bo…...
自学错误合集--项目打包报错,运行报错持续更新中
java后端自学错误总结 一.项目打包报错2.项目打包之后运行报错 二.项目运行报错 一.项目打包报错 javac: �Ҳ����ļ�: E:\xx\xx\xx\docer-xx\src\main\java\xx\xx\xx\xx\xx\xx.java �ÿ…...
KUKA机器人故障报警信息处理(一)
1、KSS00276 机器人参数不等于机器人类型 ①登录专家模式 ②示教器操作:【菜单】—【显示】—【变量】—【单个】 ③名称输入:$ROBTRAFO[] 新值:TRAFONAME[] ④点击【设定值】。 2、电池报警: ①“充电电池警告-发现老化的蓄电池…...
数仓开发:DIM层数据处理
一、了解DIM层 这个就是数仓开发的分层架构 我们现在是在DIM层,从ods表中数据进行加工处理,导入到dwd层,但是记住我们依然是在DIM层,而非是上面的ODS和DWD层。 二、处理维度表数据 ①先确认hive的配置 -- 开启动态分区方案 -- …...
echars设置渐变颜色的方法
在我们日常的开发中,难免会遇到有需求,需要使用echars设置渐变的图表,如果我们需要设置给图表设置渐变颜色的话,我们只需要在 series 配置项中 添加相应的属性配置项即可。 方式一:colorStops type:‘lin…...
SpringBoot3项目打包和运行
六、SpringBoot3项目打包和运行 6.1 添加打包插件 在Spring Boot项目中添加spring-boot-maven-plugin插件是为了支持将项目打包成可执行的可运行jar包。如果不添加spring-boot-maven-plugin插件配置,使用常规的java -jar命令来运行打包后的Spring Boot项目是无法找…...
Spring Cloud Gateway的部署
不要将 Spring Cloud Gateway 部署到 Tomcat 可以将Spring Cloud Gateway打成jar包,并通过jar包部署,步骤: 1. 修改构建配置 确保你的pom.xml文件中的打包方式为jar。 <packaging>jar</packaging> 2 打包项目 mvn clean pack…...
算法提高之树的最长路径
算法提高之树的最长路径 核心思想:树形dp 枚举路径的中间节点用f1[i] 表示i的子树到i的最长距离,f2[i]表示次长距离最终答案就是max(f1[i]f2[i]) #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N …...
git/gerrit使用遇到的问题
Push时出现的多个问题及其解决 branch【...】not found 这个错误通常出现在 Git 命令中指定的分支名称中包含特殊字符或者语法错误时。需要确保指定的分支名称是正确的,并且没有任何不支持的字符。 例如,如果分支名称是 feature/branch,应该…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

