当前位置: 首页 > news >正文

【算法刷题day44】Leetcode:518. 零钱兑换 II、377. 组合总和 Ⅳ

文章目录

    • Leetcode 518. 零钱兑换 II
      • 解题思路
      • 代码
      • 总结
    • Leetcode 377. 组合总和 Ⅳ
      • 解题思路
      • 代码
      • 总结

草稿图网站
java的Deque

Leetcode 518. 零钱兑换 II

题目:518. 零钱兑换 II
解析:代码随想录解析

解题思路

先遍历物品,再遍历背包。

代码

class Solution {public int change(int amount, int[] coins) {int []dp = new int[amount+1];dp[0] = 1;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {dp[j] += dp[j - coins[i]];//加上这张钱外的钱的总数}}return dp[amount];}
}

总结

暂无

Leetcode 377. 组合总和 Ⅳ

题目:377. 组合总和 Ⅳ
解析:代码随想录解析

解题思路

先遍历背包,再遍历物品

代码

class Solution {public int combinationSum4(int[] nums, int target) {int []dp = new int[target+1];dp[0] = 1;for (int j = 0; j <= target; j++) {for (int i = 0; i < nums.length; i++) {if (j >= nums[i]) {dp[j] += dp[j-nums[i]];}}}return dp[target];}
}

总结

暂无

相关文章:

【算法刷题day44】Leetcode:518. 零钱兑换 II、377. 组合总和 Ⅳ

文章目录 Leetcode 518. 零钱兑换 II解题思路代码总结 Leetcode 377. 组合总和 Ⅳ解题思路代码总结 草稿图网站 java的Deque Leetcode 518. 零钱兑换 II 题目&#xff1a;518. 零钱兑换 II 解析&#xff1a;代码随想录解析 解题思路 先遍历物品&#xff0c;再遍历背包。 代码…...

『51单片机』AT24C02[IIC总线]

存储器的介绍 ⒈ROM的功能⇢ROM的数据在程序运行的时候是不容改变的&#xff0c;除非你再次烧写程序&#xff0c;他就会改变&#xff0c;就像我们的书本&#xff0c;印上去就改不了了&#xff0c;除非再次印刷&#xff0c;这个就是ROM的原理。 注→在后面发展的ROM是可以可写可…...

Jenkins与Rancher的配合使用

Jenkins和Rancher是两个常用的DevOps工具&#xff0c;可以很好地配合使用来实现持续集成和持续部署。 Jenkins是一个开源的自动化构建工具&#xff0c;可以实现自动化的代码构建、测试和部署等一系列操作。可以通过Jenkins来触发构建任务&#xff0c;例如从代码仓库中拉取最新的…...

GIS入门,常用的多边形平滑曲线算法介绍和JavaScript的多边形平滑曲线算法库chaikin-smooth的实现原理和使用

前言 本章介绍一下常用的多边形平滑曲线算法及其使用案例。 多边形平滑算法通常用于图形处理或计算机图形学中,以使线条或曲线在连接处平滑过渡,而不出现明显的棱角或断裂。多边形平滑算法有多种实现方法,其中一些常见的有下面几种: 贝塞尔曲线插值(Bezier Curve Interpo…...

气膜体育馆内部的采光效果如何?—轻空间

气膜体育馆内部的采光效果如何&#xff1f;这是许多人对这种创新建筑的一个关键关注点。 首先&#xff0c;气膜体育馆的采光性非常好。阳光透过屋顶时以漫射光的方式进入室内&#xff0c;这种透射方式使得室内的光线柔和而均匀。从内部观察&#xff0c;整个屋顶就像一个连续的明…...

矩阵的对称正定性判决(复习)

文章目录 本科学的数学知识忘的太快了 如何判断一个实矩阵是否是对称正定 在线性代数中&#xff0c;一个实对称矩阵是否为正定可以通过以下方法判断&#xff1a; 对称性&#xff1a; 首先&#xff0c;确认矩阵是否对称&#xff0c;即矩阵的转置是否等于其本身。 特征值检查&…...

网络安全之DHCP详解

DHCP&#xff1a;Dynamic Host Configration Protocol 动态主机配置协议 某一协议的数据是基于UDP封装的&#xff0c;当它想确保自己的可靠性时&#xff0c;这个协议要么选确认重传机制&#xff0c;要么选周期性传输。 DHCP是确认重传&#xff0c;【UDP|DHCP】,当DHCP分配完地…...

【Proteus】LED呼吸灯 直流电机调速

1.LED呼吸灯 #include <REGX51.H> sbit LEDP2^0; void delay(unsigned int t) {while(t--); } void main() {unsigned char time,i;while(1){for(time0;time<100;time){for(i0;i<20;i){LED0;delay(time);LED1;delay(100-time);}}for(time100;time>0;time--){fo…...

今天遇到一个GPT解决不了的问题

问题描述 你好&#xff0c;postman的一个post请求&#xff0c;编辑器里面放了一个很长的json数据&#xff0c;报Tokenization is skipped for long lines for performance reasons. This can be configured via editor.maxTokenizationLineLength.&#xff0c;但是同样的数据&a…...

优化SQL的方法

来自组内分享&#xff0c;包含了比较常使用到的八点&#xff1a; 避免使用select * union all代替union 小表驱动大表 批量操作 善用limit 高效的分页 用连接查询代替子查询 控制索引数量 一、避免使用select * 消耗数据库资源 消耗更多的数据库服务器内存、CPU等资源。 消…...

库存管理系统开源啦

软件介绍 ModernWMS是一个针对小型物流仓储供应链流程的开源库存管理系统。该系统的开发初衷是为了满足中小型企业在有限IT预算下对仓储管理的需求。通过总结多年ERP系统研发经验&#xff0c;项目团队开发了这套适用于中小型企业的系统&#xff0c;以帮助那些有特定需求的用户。…...

【java】接口

什么是接口 接口当中存在的是对方法的定义&#xff0c;而不是对方法的具体实现。 为什么不实现这个方法呢&#xff1f; 继承的本质是代码的复用。当一个父类会经常被继承&#xff0c;并且子类都要自己实现方法时&#xff0c;父类中的方法就会显得累赘&#xff0c;并且占用了…...

Java中的类型转换

一、类型转换 对类型转换来说分为向上类型转换和向下类型转换&#xff1a; 向上类型转换是自动完成的&#xff0c;一般是小类型向大类型转换。在引用类型中是子类型向父类型转换。向下类型转换是强制完成的&#xff0c;一般是大类型向小类型转换。在引用类型中是父类型向子类…...

定义范围对PFMEA分析的重要性——SunFMEA软件

在进行PFMEA分析时&#xff0c;定义范围是一个至关重要的步骤。这是因为&#xff0c;通过明确分析的范围&#xff0c;可以确保团队关注到最关键、最可能影响产品质量的过程&#xff0c;从而更有效地识别和解决潜在问题。今天SunFMEA软件和大家一起讨论定义范围对PFMEA操作的重要…...

json返回工具类|世界协调时间(UTC)

一、问题 世界协调时间&#xff08;UTC&#xff09;是一个标准的时间参考&#xff0c;通常被用于跨越不同时区的时间标准。要将 UTC 时间转换为中国时间&#xff08;中国标准时间&#xff09;&#xff0c;你需要将时间加上8个小时&#xff0c;因为中国位于 UTC8 时区。 初中知…...

MySQL·内置函数

目录 函数 日期函数 案例1&#xff1a;创建一张表&#xff0c;记录生日 案例2&#xff1a;创建一个留言表 案例3&#xff1a;请查询在2分钟内发布的帖子 字符串函数 案例1&#xff1a; 获取emp表的ename列的字符集 案例2&#xff1a;要求显示exam_result表中的信息&am…...

vue根据文字动态判断溢出...鼠标悬停显示el-tooltip展示

使用自定义el- tooltip 组件 定义 Tooltip是一种小型弹出框,它显示有关特定页面元素的信息,例如按钮、链接或图标。Tooltip通常以半透明的气泡形式呈现,并出现在页面元素的旁边或下方。 它可以改善用户体验,使用户更容易理解页面元素的功能和意图。用户可以通过将鼠标悬停…...

使用Tkinter实现数据预测工具的GUI界面展示

如果构建好预测模型后&#xff0c;想将预测模型通过一个交互式的页面显示&#xff0c;可以通过下边两种方式实现。 本文中代码有详细解析注释&#xff0c;便不再如往期一样分开讲解了&#xff0c;有需要的朋友可以直接拿去使用&#xff0c;代码可以直接运行&#xff0c;把预测…...

机器学习笔记-22

终章 至此吴恩达老师的机器学习课程已经完成啦&#xff0c;总结一下&#xff1a; 1.监督学习的算法&#xff1a;线性回归、逻辑回归、神经网络和向量机 2.无监督学习的算法&#xff1a;K-Means、PCA、异常检测 3.推荐系统、大规模数据处理、正则化、如何评估算法 4.上限分析、…...

车间为什么选择蒸发式冷风机?

蒸发式冷风机具有以下特点&#xff1a; 节能环保&#xff1a;蒸发式冷风机不使用压缩机和化学制冷剂&#xff0c;而是通过水的蒸发来降低温度&#xff0c;因此它是无压缩机、无冷媒、无污染的环保型产品。降温效果显著&#xff1a;在较潮湿地区&#xff0c;它一般能达到5-9℃的…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

Vue3中的computer和watch

computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...

归并排序:分治思想的高效排序

目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法&#xff0c;由约翰冯诺伊曼在1945年提出。其核心思想包括&#xff1a; 分割(Divide)&#xff1a;将待排序数组递归地分成两个子…...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...