当前位置: 首页 > news >正文

C# 局部静态函数,封闭方法中的最佳选择

C# 局部静态函数,封闭方法中的最佳选择

  • 简介
    • 特性
  • 应用场景
    • 辅助计算
    • 递归与尾递归优化
    • 筛选与过滤操作
    • 查找与映射操作
  • 生命周期
  • 静态局部函数 vs 普通局部函数
    • 性能
    • 封装性
    • 可读性

简介

C# 局部静态函数(Local Static Functions)是一种函数作用域内的嵌套函数,同时可以标记为 static,在 C# 8.0 中引入。这种特性允许我们定义更安全、更高效、更可读的辅助方法,并能在某些业务场景下带来便利和性能优化。

  • 局部函数:在另一个函数内定义的嵌套函数,具有访问外部作用域变量的能力。
  • 静态局部函数:添加 static 关键字,使得局部函数无法访问外部作用域变量。
using System;class Program
{static void Main(){// 局部变量int outerVariable = 42;// 普通局部函数,可以访问外部变量int NormalLocalFunction(){return outerVariable + 10;}// 静态局部函数,无法访问外部变量static int StaticLocalFunction(){return 10; // outerVariable 不可见}Console.WriteLine(NormalLocalFunction()); // 输出:52Console.WriteLine(StaticLocalFunction()); // 输出:10}
}

特性

  • 封装性:局部函数属于封闭函数的内部实现细节,提高封装性。
  • 静态性:静态局部函数不依赖外部变量,避免潜在的闭包问题,性能更好。
  • 作用域:局部函数在封闭函数的作用域内定义和使用。

应用场景

辅助计算

可以将静态局部函数用于计算或转换操作,避免重复计算,提高代码可读性。

using System;class Program
{static void Main(){double CalculateCircleArea(double radius){static double Square(double x) => x * x;const double Pi = 3.141592653589793;return Pi * Square(radius);}double area = CalculateCircleArea(10);Console.WriteLine($"Area of circle: {area}");}
}
将局部函数声明为 static 会避免捕获外部变量,从而防止编译器生成闭包对象,提高性能。

递归与尾递归优化

静态局部函数非常适合用于递归计算。通过局部函数实现尾递归[^1] 优化。

using System;class Program
{static void Main(){int Factorial(int n){static int InnerFactorial(int n, int acc){if (n <= 1) return acc;return InnerFactorial(n - 1, acc * n);}return InnerFactorial(n, 1);}Console.WriteLine($"Factorial of 5: {Factorial(5)}"); // 输出:120}
}

[^1] 递归调用作为最后操作,累积结果直接传递,优化了栈深度

筛选与过滤操作

静态局部函数可以用于复杂的筛选和过滤操作,提高代码复用性和可读性。

using System;
using System.Collections.Generic;
using System.Linq;class Program
{static void Main(){IEnumerable<int> FilterNumbers(IEnumerable<int> numbers){static bool IsEven(int number) => number % 2 == 0;return numbers.Where(IsEven);}var numbers = new[] { 1, 2, 3, 4, 5, 6 };var evenNumbers = FilterNumbers(numbers);Console.WriteLine("Even numbers:");foreach (var number in evenNumbers){Console.WriteLine(number);}}
}

查找与映射操作

静态局部函数可以用于查找、映射等操作,将复杂逻辑封装在局部函数内。

using System;
using System.Collections.Generic;class Program
{static void Main(){string GetGrade(int score){static string MapScoreToGrade(int score) => score switch{>= 90 => "A",>= 80 => "B",>= 70 => "C",>= 60 => "D",_ => "F"};return MapScoreToGrade(score);}var scores = new Dictionary<string, int>{{ "Alice", 92 },{ "Bob", 83 },{ "Charlie", 78 },{ "Dave", 55 }};foreach (var (name, score) in scores){Console.WriteLine($"{name}: {GetGrade(score)}");}}
}

生命周期

  • 局部静态函数属于封闭函数内部。
  • 封闭函数调用时,局部静态函数随之被定义,并作为封闭函数的一部分进行编译。
  • 局部静态函数在封闭函数调用期间会被实例化并执行。它的生命周期与封闭函数的执行周期相关。

静态局部函数 vs 普通局部函数

性能

  • 静态局部函数不捕获外部变量,不产生闭包对象,因此性能更优。

封装性

  • 静态局部函数无法访问外部变量,更具封装性,减少意外副作用。

可读性

  • 静态局部函数能明确表明不依赖外部状态,提高代码的可读性和逻辑清晰度。

提示:如果需要在封闭的方法内定义一个方法,并且这个方法只在封闭的方法内使用,那么使用局部静态函数通常是最佳选择。

相关文章:

C# 局部静态函数,封闭方法中的最佳选择

C# 局部静态函数&#xff0c;封闭方法中的最佳选择 简介特性 应用场景辅助计算递归与尾递归优化筛选与过滤操作查找与映射操作 生命周期静态局部函数 vs 普通局部函数性能封装性可读性 简介 C# 局部静态函数&#xff08;Local Static Functions&#xff09;是一种函数作用域内…...

【MySQL】MySQL 8.4.0 长期支持版(LTS)安装

就在2024年 “5.1” 节前&#xff0c;MySQL官方发布了8.4.0长期支持版&#xff08;LTS - Long Term Support&#xff09;。根据官方提供的文档&#xff0c;在本地虚拟机进行安装测试。 安装、配置和启动过程记录如下&#xff1a; 第一步&#xff0c;上传到安装包&#xff08;my…...

nest中的ORM

在 Nest.js 中执行 SQL 查询通常涉及使用 TypeORM 或 Sequelize 这样的 ORM&#xff08;对象-关系映射&#xff09;库。这些库使得在 Nest.js 应用程序中连接和操作 SQL 数据库变得更加简单和直观。 以下是一个使用 TypeORM 在 Nest.js 中执行 SQL 查询的示例代码&#xff1a;…...

TCP(Transmission Control Protocol,传输控制协议)如何保证数据的完整性?

TCP&#xff08;Transmission Control Protocol&#xff0c;传输控制协议&#xff09;通过一系列机制来保证数据传输的可靠性和无错性&#xff0c;这些机制主要包括&#xff1a; 校验和&#xff1a;TCP报文段包含一个校验和字段&#xff0c;用于检测数据在传输过程中是否出错。…...

Numpy库介绍

NumPy&#xff08;Numerical Python的缩写&#xff09;是Python中用于科学计算的一个强大的库。它提供了高性能的多维数组对象&#xff08;即ndarray&#xff09;、用于处理这些数组的工具以及用于数学函数操作的函数。让我为你介绍一下它的一些主要功能&#xff1a; 1. 多维数…...

临时有事无法及时签字盖章?试试用契约锁设置“代理人”

遇到“领导休假中、在开重要会议、外出考察或者主任医生手术中等”一段时间内不方便或者无法及时签字盖章的情况怎么办&#xff1f;业务推进不了只能干等&#xff1f; 契约锁电子签及印控平台支持印章、签名“临时授权”、“代理签署”&#xff0c;实现指定人、指定时间段、指定…...

数据库权限管理

1.查看系统级权限&#xff08;global level) Select * from mysql.user\G; 2.查看数据库中所有表的权限 Select * from mysql.db\G 3.远程连接数据库 第一步在有数据库服务上的主机上&#xff1a;授权 grant all on *.* to root192.168.40.83 identified by Zxy20234; 第…...

如何创建一个 Django 应用并连接到数据库

简介 Django 是一个用 Python 编写的免费开源的 Web 框架。这个工具支持可扩展性、可重用性和快速开发。 在本教程中&#xff0c;您将学习如何为一个博客网站建立与 MySQL 数据库的初始基础。这将涉及使用 django-admin 创建博客 Web 应用程序的骨架结构&#xff0c;创建 MyS…...

【算法刷题day44】Leetcode:518. 零钱兑换 II、377. 组合总和 Ⅳ

文章目录 Leetcode 518. 零钱兑换 II解题思路代码总结 Leetcode 377. 组合总和 Ⅳ解题思路代码总结 草稿图网站 java的Deque Leetcode 518. 零钱兑换 II 题目&#xff1a;518. 零钱兑换 II 解析&#xff1a;代码随想录解析 解题思路 先遍历物品&#xff0c;再遍历背包。 代码…...

『51单片机』AT24C02[IIC总线]

存储器的介绍 ⒈ROM的功能⇢ROM的数据在程序运行的时候是不容改变的&#xff0c;除非你再次烧写程序&#xff0c;他就会改变&#xff0c;就像我们的书本&#xff0c;印上去就改不了了&#xff0c;除非再次印刷&#xff0c;这个就是ROM的原理。 注→在后面发展的ROM是可以可写可…...

Jenkins与Rancher的配合使用

Jenkins和Rancher是两个常用的DevOps工具&#xff0c;可以很好地配合使用来实现持续集成和持续部署。 Jenkins是一个开源的自动化构建工具&#xff0c;可以实现自动化的代码构建、测试和部署等一系列操作。可以通过Jenkins来触发构建任务&#xff0c;例如从代码仓库中拉取最新的…...

GIS入门,常用的多边形平滑曲线算法介绍和JavaScript的多边形平滑曲线算法库chaikin-smooth的实现原理和使用

前言 本章介绍一下常用的多边形平滑曲线算法及其使用案例。 多边形平滑算法通常用于图形处理或计算机图形学中,以使线条或曲线在连接处平滑过渡,而不出现明显的棱角或断裂。多边形平滑算法有多种实现方法,其中一些常见的有下面几种: 贝塞尔曲线插值(Bezier Curve Interpo…...

气膜体育馆内部的采光效果如何?—轻空间

气膜体育馆内部的采光效果如何&#xff1f;这是许多人对这种创新建筑的一个关键关注点。 首先&#xff0c;气膜体育馆的采光性非常好。阳光透过屋顶时以漫射光的方式进入室内&#xff0c;这种透射方式使得室内的光线柔和而均匀。从内部观察&#xff0c;整个屋顶就像一个连续的明…...

矩阵的对称正定性判决(复习)

文章目录 本科学的数学知识忘的太快了 如何判断一个实矩阵是否是对称正定 在线性代数中&#xff0c;一个实对称矩阵是否为正定可以通过以下方法判断&#xff1a; 对称性&#xff1a; 首先&#xff0c;确认矩阵是否对称&#xff0c;即矩阵的转置是否等于其本身。 特征值检查&…...

网络安全之DHCP详解

DHCP&#xff1a;Dynamic Host Configration Protocol 动态主机配置协议 某一协议的数据是基于UDP封装的&#xff0c;当它想确保自己的可靠性时&#xff0c;这个协议要么选确认重传机制&#xff0c;要么选周期性传输。 DHCP是确认重传&#xff0c;【UDP|DHCP】,当DHCP分配完地…...

【Proteus】LED呼吸灯 直流电机调速

1.LED呼吸灯 #include <REGX51.H> sbit LEDP2^0; void delay(unsigned int t) {while(t--); } void main() {unsigned char time,i;while(1){for(time0;time<100;time){for(i0;i<20;i){LED0;delay(time);LED1;delay(100-time);}}for(time100;time>0;time--){fo…...

今天遇到一个GPT解决不了的问题

问题描述 你好&#xff0c;postman的一个post请求&#xff0c;编辑器里面放了一个很长的json数据&#xff0c;报Tokenization is skipped for long lines for performance reasons. This can be configured via editor.maxTokenizationLineLength.&#xff0c;但是同样的数据&a…...

优化SQL的方法

来自组内分享&#xff0c;包含了比较常使用到的八点&#xff1a; 避免使用select * union all代替union 小表驱动大表 批量操作 善用limit 高效的分页 用连接查询代替子查询 控制索引数量 一、避免使用select * 消耗数据库资源 消耗更多的数据库服务器内存、CPU等资源。 消…...

库存管理系统开源啦

软件介绍 ModernWMS是一个针对小型物流仓储供应链流程的开源库存管理系统。该系统的开发初衷是为了满足中小型企业在有限IT预算下对仓储管理的需求。通过总结多年ERP系统研发经验&#xff0c;项目团队开发了这套适用于中小型企业的系统&#xff0c;以帮助那些有特定需求的用户。…...

【java】接口

什么是接口 接口当中存在的是对方法的定义&#xff0c;而不是对方法的具体实现。 为什么不实现这个方法呢&#xff1f; 继承的本质是代码的复用。当一个父类会经常被继承&#xff0c;并且子类都要自己实现方法时&#xff0c;父类中的方法就会显得累赘&#xff0c;并且占用了…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

Linux-进程间的通信

1、IPC&#xff1a; Inter Process Communication&#xff08;进程间通信&#xff09;&#xff1a; 由于每个进程在操作系统中有独立的地址空间&#xff0c;它们不能像线程那样直接访问彼此的内存&#xff0c;所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...

LangChain【6】之输出解析器:结构化LLM响应的关键工具

文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器&#xff1f;1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...

生产管理系统开发:专业软件开发公司的实践与思考

生产管理系统开发的关键点 在当前制造业智能化升级的转型背景下&#xff0c;生产管理系统开发正逐步成为企业优化生产流程的重要技术手段。不同行业、不同规模的企业在推进生产管理数字化转型过程中&#xff0c;面临的挑战存在显著差异。本文结合具体实践案例&#xff0c;分析…...