当前位置: 首页 > news >正文

基于机器学习的学生学习行为自主评价设计与实现

管理员功能:

a)学生学习数据管理:可查看学生学习的详情,编辑学生学习的内容,删除和添加学生学习,设置学生学习库存。

b)角色管理:增加删除学生用户,分配学生用户权限,查看学生用户的基本信息,并进行管理和查询的操作。

c)学生学习学生学习数据分析:通过网络爬虫爬取学生学习学生学习数据,对数据进行抽取和去重处理,对数据清理之后,进行分析和可视化展示,比如学生学习新增情况和学生学习数据分析。

学生用户的功能:

a)学生学习信息查询及查看:有三种查询方式,学生名称、其一均可进行模糊查询。

b)添加学生学习成绩数据管理:点击学生学习数据管理,可查看数据管理栏里的学生学习,可以删除多余的学生学习数据。

3.3.1 系统登录需求分析

首先确定系统有两个角色:管理员以及学生用户。

主要的登录功能:首先选择身份,管理员或学生用户身份,点击登陆,验证成功后跳转至下一个的页面,若密码错误或是学生用户名错误则跳转失败,弹出报错提示。

3.3.2 系统管理需求分析

系统管理包含:学生用户管理和角色管理,对学生用户的角色分配。如图所示为用例图。

3.3.3 学生学习数据管理需求分析

学生学习数据管理:选择好自己想要的学生学习后,点击加入数据管理,可查看数据管理栏里的学生学习,可以删除学生学习数据,确定数据管理后点击提交,完成本次数据管理。具体需求是首先,根据编号检索数据管理者信息,然后输入编号,检索数据,然后选择数据管理。

3.3.4 数据抽取管理需求分析

学生学习爬虫日期:输入学生学习编号,检索学生学习,显示是否重复,然后数据抽取。

管理员或学生用户身份,点击登陆,验证成功后跳转至下一个的页面,若密码错误或是学生用户名错误则跳转失败,弹出报错提示。

管理校园学生课堂表现的信息(包括主键、姓名、学生编号、学生表现、分数)。

数据库表:

评价结果如图所示:

聚类分析:

算法代码:

相关文章:

基于机器学习的学生学习行为自主评价设计与实现

管理员功能: a)学生学习数据管理:可查看学生学习的详情,编辑学生学习的内容,删除和添加学生学习,设置学生学习库存。 b)角色管理:增加删除学生用户,分配学生用户权限,查看学生用户…...

toml与json联系对比

前言 本文简单介绍toml;并且和json转化做对比,以及我对toml设计的理解。 参考: TOML: 简体中文 v1.0.0 json和toml转化工具 在线JSON转toml-toml转JSON - bejson在线工具 正文 数组 说白了,就是一个变量名,有多个…...

(已解决)org.springframework.amqp.rabbit.support.ListenerExecutionFailedException

报错截图 解决方案 1、登录rabbitMQ网址,删除所有队列 2、重启rabbitMQ 亲测有效!!!亲测有效!!!亲测有效!!!...

基于FPGA的数字信号处理(9)--定点数据的两种溢出处理模式:饱和(Saturate)和绕回(Wrap)

1、前言 在逻辑设计中,为了保证运算结果的正确性,常常需要对结果的位宽进行扩展。比如2个3bits的无符号数相加,只有将结果设定为4bits,才能保证结果一定是正确的。不然,某些情况如77 14(1110),如果结果只…...

基于STM32的宠物箱温度湿度监控系统毕业设计

基于STM32的宠物箱温度湿度监控系统毕业设计 一、项目背景与意义 随着人们生活水平的提高,养宠物已经成为一种流行趋势。然而,对于宠物的居住环境,尤其是温度与湿度的控制,是确保宠物健康的关键。本项目旨在设计一款基于STM32微…...

Linux sudo 指令

sudo命令 概念: sudo是linux下常用的允许普通用户使用超级用户权限的工具,允许系统管理员让普通用户执行一些或者全部的root命令,如halt,reboot,su等。这样不仅减少了root用户的登录和管理时间,同样也提高…...

【NumPy数组】:深入了解numpy.linspace()函数

一、numpy.linspace()函数的原理 numpy.linspace()函数的核心原理是在指定的起始值和终止值之间,按照给定的元素个数,生成等间隔的数值序列。与numpy.arange()函数不同,numpy.linspace()生成的是等间隔的数值,而不是等差的数值&a…...

计算机网络实验二:交换机的基本配置与操作

实验二:交换机的基本配置与操作 一、实验要求 (1)掌握windows网络参数的设置(TCP/IP协议的设置); (2)掌握交换机命令行各种操作模式的区别,以及模式之间的切换; (3)掌握交换机的全局的基本配置; (4)掌握交换机端口的常用配置参数; (5)查看交换机系统和…...

宏的优缺点?C++有哪些技术替代宏?(const)权限的平移、缩小

宏的优缺点? 优点: 1.增强代码的复用性。【减少冗余代码】 2.提高性能,提升代码运行效率。 缺点: 1.不方便调试宏。(因为预编译阶段进行了替换) 2.导致代码可读性差,可维护性差&#xff0…...

2024数维杯数学建模选题建议及各题思路来啦!

大家好呀,2024数维杯数学建模挑战赛开始了,来说一下初步的选题建议吧: 首先定下主基调, 本次数维杯建议选B。难度上C>A>B。B题目是比较经典的数据分析类题目,主要做统计分析差异显著性以及相关…...

centos的常用命令

CentOS是一个基于Red Hat Enterprise Linux(RHEL)的开源操作系统,常用于服务器环境。以下是一些CentOS中常用的命令: 文件和目录管理: ls:列出目录中的文件。 ls -l:以长格式列出文件和目录的…...

【Android】使用Handler实现一个定时器

需求 实现一个定时任务,每隔一秒执行一次 实现 使用Handler实现 private Handler topUIHandler;private void initTopUiHandler() {topUIHandler new Handler(getMainLooper()) {Overridepublic void handleMessage(Message msg) {//执行这个定时任务updateTop…...

Java | Leetcode Java题解之第80题删除有序数组中的重复项II

题目&#xff1a; 题解&#xff1a; class Solution {public int removeDuplicates(int[] nums) {int n nums.length;if (n < 2) {return n;}int slow 2, fast 2;while (fast < n) {if (nums[slow - 2] ! nums[fast]) {nums[slow] nums[fast];slow;}fast;}return sl…...

java后端15问!

前言 最近一位粉丝去面试一个中厂&#xff0c;Java后端。他说&#xff0c;好几道题答不上来&#xff0c;于是我帮忙整理了一波答案 G1收集器JVM内存划分对象进入老年代标志你在项目中用到的是哪种收集器&#xff0c;怎么调优的new对象的内存分布局部变量的内存分布Synchroniz…...

OmniPlan Pro 4 for Mac中文激活版:项目管理的新选择

OmniPlan Pro 4 for Mac作为一款专为Mac用户设计的项目管理软件&#xff0c;为用户提供了全新的项目管理体验。其直观易用的界面和强大的功能特性&#xff0c;使用户能够轻松上手并快速掌握项目管理要点。 首先&#xff0c;OmniPlan Pro 4 for Mac支持自定义视图&#xff0c;用…...

二叉树的广度优先遍历 - 华为OD统一考试(D卷)

OD统一考试(D卷) 分值: 200分 题解: Java / Python / C++ 题目描述 有一棵二叉树,每个节点由一个大写字母标识(最多26个节点)。 现有两组字母,分别表示后序遍历(左孩子->右孩子->父节点)和中序遍历(左孩子->父节点->右孩子)的结果,请输出层次遍历的结…...

代码随想录-算法训练营day31【贪心算法01:理论基础、分发饼干、摆动序列、最大子序和】

代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客 第八章 贪心算法 part01● 理论基础 ● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和 贪心算法其实就是没有什么规律可言&#xff0c;所以大家了解贪心算法 就了解它没有规律的本质就够了。 不用花心思去研究其…...

如何使用Transformer-TTS语音合成模型

1、技术原理及架构图 ​ Transformer-TTS主要通过将Transformer模型与Tacotron2系统结合来实现文本到语音的转换。在这种结构中&#xff0c;原始的Transformer模型在输入阶段和输出阶段进行了适当的修改&#xff0c;以更好地处理语音数据。具体来说&#xff0c;Transformer-TT…...

【Python】JSON数据的使用

一、JSON JSON是什么&#xff1a; JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;它以易于理解和生成的文本格式来描述数据对象。JSON最初是由Douglas Crockford在2001年提出的&#xff0c;它的设计受到了JavaScript对象字面量…...

C语言头文件的引入使用<>和““有什么区别

在C语言中&#xff0c;引入头文件时使用<>和""有以下主要区别&#xff1a; 搜索路径不同&#xff1a; 当使用#include <filename.h>时&#xff0c;编译器会首先在系统目录中搜索头文件。这些系统目录通常包含了标准库的头文件&#xff0c;如stdio.h、std…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

FOPLP vs CoWoS

以下是 FOPLP&#xff08;Fan-out panel-level packaging 扇出型面板级封装&#xff09;与 CoWoS&#xff08;Chip on Wafer on Substrate&#xff09;两种先进封装技术的详细对比分析&#xff0c;涵盖技术原理、性能、成本、应用场景及市场趋势等维度&#xff1a; 一、技术原…...

【Ftrace 专栏】Ftrace 参考博文

ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...

机器学习复习3--模型评估

误差与过拟合 我们将学习器对样本的实际预测结果与样本的真实值之间的差异称为&#xff1a;误差&#xff08;error&#xff09;。 误差定义&#xff1a; ①在训练集上的误差称为训练误差&#xff08;training error&#xff09;或经验误差&#xff08;empirical error&#x…...