【C++】STL-list模拟实现
目录
1、本次需要实现的3个类即接口总览
2、list的模拟实现
2.1 链表结点的设置以及初始化
2.2 链表的迭代器
2.3 容量接口及默认成员函数
1、本次需要实现的3个类即接口总览
#pragma once
#include<iostream>
#include<assert.h>
using namespace std;
template<class T>
struct __List_node//创建一个T类型的链表结点
{__List_node(const T& data = T());//构造函数__List_node<T>* _next;__List_node<T>* _prev;T _data;
};
template<class T, class Ref, class Ptr>
struct __List_iterator//封装链表的迭代器
{typedef __List_node<T> Node;typedef __List_iterator<T, Ref, Ptr> Self;Node* _node;//成员变量__List_iterator(Node* node);//构造函数。将迭代器中的结点初始化成传过来的结点//各种运算符重载函数Ref operator*();Ptr operator->();Self& operator++();Self operator++(int);Self& operator--();Self operator--(int);bool operator!=(const Self& it);
};
template<class T>
class List//真正的链表
{
public:typedef __List_node<T> Node;//将链表结点的名称重命名为Nodetypedef __List_iterator<T, T&, T*> iterator;typedef __List_iterator<T, const T&, const T*> const_iterator;//带头双向循环链表//默认成员函数List();~List();List(const List<T>& lt);List<T>& operator=(List<T> lt);//插入删除函数void clear();//clear是清除除了头节点意外的所以结点void push_back(const T& x);//一定要用引用,因为T不一定是内置类型void pop_back();void push_front(const T& x);void pop_front();void insert(iterator pos, const T& x);void erase(iterator pos);//迭代器相关函数iterator begin();iterator end();const_iterator begin() const;const_iterator end() const;
private:Node* _head;
};
2、list的模拟实现
2.1 链表结点的设置以及初始化
list是双向带头循环链表,所以链表的结点的成员变量需要有一个数值,一个指向前一个结点的指针,一个指向后一个结点的指针。初始化时,需要创建一个不存放有效值的头节点,并让头节点的两个指针都指向自己
链表的成员变量只需要一个指向头节点的指针
结点的结构体当中也需要创建一个构造函数,因为在创建结点时可以传入值
template<class T>
struct __List_node//创建一个T类型的链表结点
{__List_node(const T& data = T())//构造函数:_data(data), _next(nullptr), _prev(nullptr){}__List_node<T>* _next;__List_node<T>* _prev;T _data;
};
List()
{_head = new Node;_head->_next = _head;_head->_prev = _head;
}
上面的构造函数一定要使用引用,因为T不一定是内置类型
2.2 链表的迭代器
在上面的总览中可以看到链表的迭代器倍封装成了一个类,并且这个类有3个参数
首先,解释为什么会倍封装成一个类呢?
在vector中,迭代器就是一个指针,当我们对这个指针解引用(即*),就可以拿到这个指针所指向的数据,对其++,就可以让指针往下一个数据走,但在list中不行。如果迭代器是指向一个结点的指针,那么当对这个指针解引用时,拿到的是一个类对象,即这个结点本身,并不能拿到其中的数据,当对这个指针++时,并不能往下一个结点走所以我们需要将迭代器封装成一个类,这个类中的成员变量仍然是一个指向结点的指针,只是我们会重载一下里面的运算符,让我们*或++等操作的时候,能够直接拿到里面的数据和让指针往下一个结点。所以我们封装这个类的原因,就是为了让我们在使用list时,与使用vector等是一样的,即更加方便。实际上,迭代器这个类里面的成员变量仍然是一个指向结点的指针。
其次,解释为什么会有3个参数呢?
我们可以看到在链表类中会对迭代器进行重命名
typedef __List_iterator<T, T&, T*> iterator;
typedef __List_iterator<T, const T&, const T*> const_iterator;
因为我们对于list和const list调用的迭代器是不同的,若我们只有一个参数T,那这个时候我们重命名是没办法重命名两个的,也就是说,若只有一个参数,则需要封装两个迭代器的类,而这两个类中只有operator*和operator->是不同的,所以弄成3个参数会更好一些。
template<class T, class Ref, class Ptr>
struct __List_iterator//封装链表的迭代器
{typedef __List_node<T> Node;typedef __List_iterator<T, Ref, Ptr> Self;Node* _node;//成员变量__List_iterator(Node* node)//构造函数。将迭代器中的结点初始化成传过来的结点:_node(node){}// *itRef operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}// ++itSelf& operator++(){_node = _node->_next;return *this;}// it++Self operator++(int){Self tmp(*this);//调用默认的拷贝构造,因为是指针类型所以直接用默认的//_node = _node->_next;++(*this);return tmp;}// --itSelf& operator--(){_node = _node->_prev;return *this;}// it--Self operator--(int){Self tmp(*this);//_node = _node->_prev;--(*this);return tmp;}// it != end()bool operator!=(const Self& it){return _node != it._node;}
};
iterator begin()
{return iterator(_head->_next);//使用这个结点去构造一个迭代器,并将这个迭代器返回
}
iterator end()
{return iterator(_head);
}
const_iterator begin() const
{return const_iterator(_head->_next);//使用这个结点去构造一个迭代器,并将这个迭代器返回
}
const_iterator end() const
{return const_iterator(_head);
}
当我们是list调用begin是,则会调用返回值是iterator的,而iterator是__List_iterator<T, T&, T*>的,也就是调用*和->时,拿到的都是可读可写的值,反之则是只读的
int main()
{//对于内置类型List<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);List<int>::iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";it++;}return 0;
}
class Date
{
public:int _year = 0;int _month = 1;int _day = 1;
};
int main()
{//对于自定义类型List<Date> lt;lt.push_back(Date());lt.push_back(Date());List<Date>::iterator it = lt.begin();while (it != lt.end()){cout << it->_year << " " << it->_month << " " << it->_day << endl;//也可以cout << (*it)._year << " " << (*it)._month << " " << (*it)._day << endl;it++;}return 0;
}
->通常是在链表中存储的是自定义类型才会使用,通过上面可知->返回的是这个结构体的数值域的地址,那不应该是it->->_year吗(因为前面的it->返回后是Date*)?为了可读性,倍编译器处理了一下
这里说明一下begin和end返回的结点分别是那个
2.3 容量接口及默认成员函数
~List()
{clear();delete _head;_head = nullptr;
}
List(const List<T>& lt)
{_head = new Node;_head->_next = _head;_head->_prev = _head;//const_iterator it = lt.begin();//这里迭代器不需要指定是那个类域,因为就是在这个类中使用//while (it != lt.end())//{// push_back(*it);// ++it;//}for (auto e : lt)//这里与上面用迭代器一样,因为最终也会被替换成迭代器push_back(e);
}
/*List<T>& operator=(const List<T>& lt)
{if (this != <){clear();for (ayto e : lt)push_back(e);}return *this;
}*/
List<T>& operator=(List<T> lt)
{swap(_head, lt._head);//原来的空间给这个临时变量,因为这个临时变量是自定义类型,出了作用域后会自动调用析构函数return *this;
}
void clear()//clear是清除除了头节点意外的所以结点
{iterator it = begin();while (it != end()){erase(it++);}
}
void push_back(const T& x)//一定要用引用,因为T不一定是内置类型
{Node* tail = _head->_prev;Node* newnode = new Node(x);tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;/*insert(end(),x);*/
}
void pop_back()
{Node* tail = _head->_prev;Node* prev = tail->_prev;delete tail;_head->_prev = prev;prev->_next = _head;//erase(--end());
}
void push_front(const T& x)
{Node* first = _head->_next;Node* newnode = new Node(x);_head->_next = newnode;newnode->_prev = _head;newnode->_next = first;first->_prev = newnode;//insert(begin(), x);
}
void pop_front()
{Node* first = _head->_next;Node* second = first->_next;delete first;_head->_next = second;second->_prev = _head;//erase(begin());
}
void insert(iterator pos, const T& x)
{Node* newnode = new Node(x);Node* cur = pos._node;Node* prev = cur->_prev;prev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;
}
void erase(iterator pos)
{assert(pos != end());//不能删除头节点Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;prev->_next = next;next->_prev = prev;delete cur;cur = nullptr;
}
template<class T>
struct __List_node//创建一个T类型的链表结点
{__List_node(const T& data = T())//构造函数:_data(data), _next(nullptr), _prev(nullptr){}__List_node<T>* _next;__List_node<T>* _prev;T _data;
};
template<class T, class Ref, class Ptr>
struct __List_iterator//封装链表的迭代器
{typedef __List_node<T> Node;typedef __List_iterator<T, Ref, Ptr> Self;Node* _node;//成员变量__List_iterator(Node* node)//构造函数。将迭代器中的结点初始化成传过来的结点:_node(node){}// *itRef operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}// ++itSelf& operator++(){_node = _node->_next;return *this;}// it++Self operator++(int){Self tmp(*this);//调用默认的拷贝构造,因为是指针类型所以直接用默认的//_node = _node->_next;++(*this);return tmp;}// --itSelf& operator--(){_node = _node->_prev;return *this;}// it--Self operator--(int){Self tmp(*this);//_node = _node->_prev;--(*this);return tmp;}// it != end()bool operator!=(const Self& it){return _node != it._node;}
};
template<class T>
class List//真正的链表
{
public:typedef __List_node<T> Node;//将链表结点的名称重命名为Nodetypedef __List_iterator<T, T&, T*> iterator;typedef __List_iterator<T, const T&, const T*> const_iterator;//带头双向循环链表List(){_head = new Node;_head->_next = _head;_head->_prev = _head;}~List(){clear();delete _head;_head = nullptr;}List(const List<T>& lt){_head = new Node;_head->_next = _head;_head->_prev = _head;//const_iterator it = lt.begin();//这里迭代器不需要指定是那个类域,因为就是在这个类中使用//while (it != lt.end())//{// push_back(*it);// ++it;//}for (auto e : lt)//这里与上面用迭代器一样,因为最终也会被替换成迭代器push_back(e);}/*List<T>& operator=(const List<T>& lt){if (this != <){clear();for (ayto e : lt)push_back(e);}return *this;}*/List<T>& operator=(List<T> lt){swap(_head, lt._head);//原来的空间给这个临时变量,因为这个临时变量是自定义类型,出了作用域后会自动调用析构函数return *this;}void clear()//clear是清除除了头节点意外的所以结点{iterator it = begin();while (it != end()){erase(it++);}}void push_back(const T& x)//一定要用引用,因为T不一定是内置类型{Node* tail = _head->_prev;Node* newnode = new Node(x);tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;/*insert(end(),x);*/}void pop_back(){Node* tail = _head->_prev;Node* prev = tail->_prev;delete tail;_head->_prev = prev;prev->_next = _head;//erase(--end());}void push_front(const T& x){Node* first = _head->_next;Node* newnode = new Node(x);_head->_next = newnode;newnode->_prev = _head;newnode->_next = first;first->_prev = newnode;//insert(begin(), x);}void pop_front(){Node* first = _head->_next;Node* second = first->_next;delete first;_head->_next = second;second->_prev = _head;//erase(begin());}void insert(iterator pos, const T& x){Node* newnode = new Node(x);Node* cur = pos._node;Node* prev = cur->_prev;prev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;}void erase(iterator pos){assert(pos != end());//不能删除头节点Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;prev->_next = next;next->_prev = prev;delete cur;cur = nullptr;}iterator begin(){return iterator(_head->_next);//使用这个结点去构造一个迭代器,并将这个迭代器返回}iterator end(){return iterator(_head);}const_iterator begin() const{return const_iterator(_head->_next);//使用这个结点去构造一个迭代器,并将这个迭代器返回}const_iterator end() const{return const_iterator(_head);}
private:Node* _head;
};
相关文章:

【C++】STL-list模拟实现
目录 1、本次需要实现的3个类即接口总览 2、list的模拟实现 2.1 链表结点的设置以及初始化 2.2 链表的迭代器 2.3 容量接口及默认成员函数 1、本次需要实现的3个类即接口总览 #pragma once #include<iostream> #include<assert.h> using namespace std; templ…...

Java 7大排序
🐵本篇文章将对数据结构中7大排序的知识进行讲解 一、插入排序 有一组待排序的数据array,以升序为例,从第二个数据开始(用tmp表示)依次遍历整组数据,每遍历到一个数据都再从tmp的前一个数据开始࿰…...

vue3 - 图灵
目录 vue3简介整体上认识vue3项目创建Vue3工程使用官方脚手架创建Vue工程[推荐] 主要⼯程结构 数据双向绑定vue2语法的双向绑定简单表单双向绑定复杂表单双向绑定 CompositionAPI替代OptionsAPICompositionAPI简单不带双向绑定写法CompositionAPI简单带双向绑定写法setup简写⽅…...
java设计模式八 享元
享元模式(Flyweight Pattern)是一种结构型设计模式,它通过共享技术有效地支持大量细粒度的对象。这种模式通过存储对象的外部状态在外部,而将不经常变化的内部状态(称为享元)存储在内部,以此来减…...
ELK原理详解
ELK原理详解 一、引言 在当今日益增长的数据量和复杂的系统环境中,日志数据的收集、存储、分析和可视化成为了企业运营和决策不可或缺的一部分。ELK(Elasticsearch、Logstash、Kibana)堆栈凭借其高效的性能、灵活的扩展性和强大的功能&…...

多线程学习Day09
10.Tomcat线程池 LimitLatch 用来限流,可以控制最大连接个数,类似 J.U.C 中的 Semaphore 后面再讲 Acceptor 只负责【接收新的 socket 连接】 Poller 只负责监听 socket channel 是否有【可读的 I/O 事件】 一旦可读,封装一个任务对象&#x…...
第33次CSP认证Q1:词频统计
🍄题目描述 在学习了文本处理后,小 P 对英语书中的 𝑛n 篇文章进行了初步整理。 具体来说,小 P 将所有的英文单词都转化为了整数编号。假设这 𝑛n 篇文章中共出现了 𝑚m 个不同的单词,则把它们…...

pytorch加载模型出现错误
大概的错误长下面这样: 问题出现的原因: 很明显,我就是犯了第一种错误。 网上的修改方法: 我觉得按道理哈,确实,蓝色部分应该是可以把问题解决了的。但是我没有解决,因为我犯了另外一个错…...

如何在Mac上恢复格式化硬盘的数据?
“嗨,我格式化了我的一个Mac硬盘,而没有使用Time Machine备份数据。这个硬盘被未知病毒感染了,所以我把它格式化为出厂设置。但是,我忘了备份我的文件。现在,我想恢复格式化的硬盘驱动器并恢复我的文档,您能…...

华为OD机试 - 手机App防沉迷系统(Java 2024 C卷 100分)
华为OD机试 2024C卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(A卷B卷C卷)》。 刷的越多,抽中的概率越大,每一题都有详细的答题思路、详细的代码注释、样例测试…...

搜维尔科技:光学动作捕捉系统用于城市公共安全智慧感知实验室
用户名称:西安科技大学 主要产品:Optitrack Priime41 光学动作捕捉系统(8头) 在6米8米的空间内,通过8个Optitrack Priime41光学动作捕捉镜头,对人体动作进行捕捉,得到用户想要的人体三维空间坐…...

保研面试408复习 4——操作系统、计网
文章目录 1、操作系统一、文件系统中文件是如何组织的?二、文件的整体概述三、UNIX外存空闲空间管理 2、计算机网络一、CSMA/CD 协议(数据链路层协议)二、以太网MAC帧MTU 标记文字记忆,加粗文字注意,普通文字理解。 1、…...

实战攻防中关于文档的妙用
一、PPT钓鱼 简单制作一个用于钓鱼的PPTX文件 一般那种小白不知道PPT也能拿来钓鱼,这里主要是借用PPT中的”动作按钮”, 我们在插入的地方,选择“动作按钮” 然后在弹出的窗口处: 比如填入上线CS的语句:powershell.exe -nop -w …...

【使用ChatGPT的API之前】OpenAI API提供的可用模型
文章目录 一. ChatGPT基本概念二. OpenAI API提供的可用模型1. InstructGPT2. ChatGPT3. GPT-4 三. 在OpenAI Playground中使用GPT模型-ing 在使用GPT-4和ChatGPT的API集成到Python应用程序之前,我们先了解ChatGPT的基本概念,与OpenAI API提供的可用模型…...

【C语言】模拟实现深入了解:字符串函数
🔥引言 本篇将模拟实现字符串函数,通过底层了解更多相关细节 🌈个人主页:是店小二呀 🌈C语言笔记专栏:C语言笔记 🌈C笔记专栏: C笔记 🌈喜欢的诗句:无人扶我青云志 我自…...
钩子函数onMounted定义了太多访问MySQL的操作 导致数据库异常
先放几种后端遇到的异常,多数和数据库有关 pymysql.err.InternalError: Packet sequence number wrong - got 102 expected 1 127.0.0.1 - - [09/May/2024 17:49:37] "GET /monitorLastTenList HTTP/1.1" 500 AttributeError: NoneType object has no at…...

Excel文件解析---超大Excel文件读写
1.使用POI写入 当我们想在Excel文件中写入100w条数据时,使用XSSFWorkbook进行写入时会发现,只有将100w条数据全部加载到内存后才会用write()方法统一写入,效率很低,所以我们引入了SXXFWorkbook进行超大Excel文件读写。 通过设置 …...
TypeScript基础:类型系统介绍
TypeScript基础:类型系统介绍 引言 TypeScript,作为JavaScript的一个超集,引入了类型系统,这为开发大型应用程序带来了诸多好处。本文将介绍TypeScript类型系统的基础知识,帮助初学者理解其概念和用法。 基础知识 …...

【Unity】Unity项目转抖音小游戏(一) 项目转换
UnityWEBGL转抖音小游戏流程 业务需求,开始接触一下抖音小游戏相关的内容,开发过程中记录一下流程。 相关参考: 抖音文档:https://developer.open-douyin.com/docs/resource/zh-CN/mini-game/develop/guide/game-engine/rd-to-SC…...
element-ui 中修改loading加载样式
element-ui 中的 loading 加载功能,默认是全屏加载效果 设置局部,需要自定义样式或者修改样式,方法如下: import { Loading } from element-uiVue.prototype.$baseLoading (text) > {let loadingloading Loading.service({…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...

门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...

Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...

欢乐熊大话蓝牙知识17:多连接 BLE 怎么设计服务不会乱?分层思维来救场!
多连接 BLE 怎么设计服务不会乱?分层思维来救场! 作者按: 你是不是也遇到过 BLE 多连接时,调试现场像网吧“掉线风暴”? 温度传感器连上了,心率带丢了;一边 OTA 更新,一边通知卡壳。…...