一次完整的GC流程
Java堆中内存区分
Java的堆由新生代(Young Generation)和老年代(Old Generation)组成。新生代存放新分配的对象,老年代存放长期存在的对象。
新生代(Young)由年轻区(Eden)、Survivor区组成(From Survivor、To Survivor)。默认情况下,新生代的Eden区和Survivor区的空间大小比例是8:2,可以通过-XX:SurvivorRatio参数调整。
一次完整的GC流程
-
对象分配:
- 新创建的对象通常首先分配在新生代的Eden区。如果对象体积过大,直接分配到老年代(大对象直接分配)。
-
Minor GC(新生代垃圾回收):
- 当Eden区空间不足时,会触发一次Minor GC。这个过程中,Eden区中不再被引用的对象将被回收。
- 存活下来的对象会被移动到Survivor区的一个(假设为S1),如果S1区也满了,则这些对象和S1中已有的、经历过一次GC的对象一起被移到另一个Survivor区(S2)或者直接晋升到老年代,具体取决于对象的年龄和Survivor区的配置。
- 每次Minor GC后,对象的年龄增加1,当对象年龄达到预设阈值(默认15)时,该对象会被晋升到老年代。
-
Survivor区调整:
- Survivor区之间的对象会在几次Minor GC后进行交换,目的是尽可能地利用Survivor空间来保留更多可幸存的对象,减少晋升到老年代的对象数量。
-
Full GC(老年代垃圾回收):
- 当老年代空间不足,或者满足其他触发条件(比如元数据空间不足、System.gc()被显式调用等)时,会触发Full GC。
- Full GC是一个更耗时的过程,因为它涉及整个堆(包括新生代和老年代)以及方法区(元数据区)的垃圾回收。
- Full GC使用标记-清除、标记-整理(也称为标记-压缩)或其他组合算法来回收空间,这一步可能包括所有存活对象的移动和空间碎片的整理。
-
标记过程:
- 不论是Minor GC还是Full GC,都会经历一个标记过程,用来识别哪些对象是可达的(即从GC Roots开始可以访问到的对象)。
- 这个过程通常包括两个阶段:初始标记和并发标记,后者可以在程序运行时并发执行以减少暂停时间。
-
清理与压缩:
- 清理阶段会删除已被标记为不可达的对象。
- 在某些情况下,特别是Full GC,还会进行压缩操作,移动存活对象以消除碎片,优化内存布局。
YoungGC和FullGC的触发条件是什么
YoungGC的触发条件比较简单,那就是当年轻代中的eden区分配满的时候就会触发。
FullGC的触发条件比较复杂也比较多,主要以下几种:
1. 老年代空间不足创建一个大对象,超过指定阈值会直接保存在老年代当中,如果老年代空间也不足,会触发Full GC。
2.当准备要触发一次YoungGC时,会进行空间分配担保,在担保过程中,发现虚拟机会检查老年 代最大可用的连续空间小于新生代所有对象的总空间,但是HandlePromotionFailure=true,继续检查发现老年代最大可用连续空间小于历次晋升到老年代的对象的平均大小时,会触发一次FullGC
3.永久代空间不足如果有永久代的话,当在永久代分配空间时没有足够空间的时候,会触发FullGC
4.代码中执行System.gc()
代码中执行System.gc()的时候,会触发FullGC,但是并不保证一定会立即触发。
相关文章:
一次完整的GC流程
Java堆中内存区分 Java的堆由新生代(Young Generation)和老年代(Old Generation)组成。新生代存放新分配的对象,老年代存放长期存在的对象。 新生代(Young)由年轻区(Eden&a…...
GAME101-Lecture06学习
前言 上节课主要讲的是三角形的光栅化。重要的思想是要利用像素的中心对三角形可见性的函数进行采样。 这节课主要就是反走样。 课程链接:Lecture 06 Rasterization 2 (Antialiasing and Z-Buffering)_哔哩哔哩_bilibili 反走样引入 通过采样,得到…...
202203青少年软件编程(Python)等级考试试卷(二级)
第 1 题 【单选题】 关于Python中的列表,下列描述错误的是?( ) A :列表是Python中内置可变序列,是若干元素的有序集合; B :列表中的每一个数据称为“元素”; C :在Python中,一个列表中的数据类型可以各不相同; D :可以使用s[1]来获取列表s的第一个元素。 正确答案…...
带有-i选项的sed命令在Linux上执行成功,但在MacOS上失败了
问题: 我已经成功地使用以下 sed 命令在Linux中搜索/替换文本: sed -i s/old_string/new_string/g /path/to/file然而,当我在Mac OS X上尝试时,我得到: command i expects \ followed by text我以为我的Mac运行的是…...
[Linux_IMX6ULL驱动开发]-GPIO子系统和Pinctrl子系统
目录 Pinctrl子系统的概念 GPIO子系统的概念 定义自己的GPIO节点 GPIO子系统的函数 引脚号的确定 基于GPIO子系统的驱动程序 驱动程序 设备树修改 之前我们进行驱动开发的时候,对于硬件的操作是依赖于ioremap对寄存器的物理地址进行映射,以此来达…...
Elasticsearch:理解人工智能相似性搜索
理解相似性搜索(也称为语义搜索)的指南,这是人工智能最新阶段的关键发现之一。 最新阶段人工智能的关键发现之一是根据相似性搜索和查找文档的能力。相似性搜索是一种比较信息的方法,其基于含义而非关键字。 相似性搜索也被称为语…...
Mac YOLO V9推理测试(基于ultralytics)
环境: Mac M1 (MacOS Sonoma 14.3.1) Python 3.11PyTorch 2.1.2 一、准备工作 使用YOLO一般都会接触ultralytics这个框架,今天来试试用该框架进行YOLO V9模型的推理。 YOLOv9目前提供了四种模型下载:yolov9-c.pt、yolov9-e.pt、gelan-c.p…...
OuterClass.this cannot be referenced from a static context
目标,定义了一个内部类,然后把这个内部类设置为单例 一 使用非静态内部类 public class OuterClass {public class InnerClass {} } 直接定义单例: .OuterClass.this cannot be referenced from a static context public class OuterClass …...
CAP与BASE分布式理论
一、分布式理论 1.CAP理论 CAP理论是说对于分布式数据存储,最多只能同时满足一致性(C,Consistency)、可用性(A, Availability)、分区容忍性(P,Partition Tolerance&…...
JavaScript性能优化策略
JavaScript性能优化策略可以分为以下几个方面: 减少内存使用:避免创建不必要的对象和数组,使用对象池或数组缓存来重复利用已有的对象和数组。此外,及时释放不再需要的对象和数组,避免内存泄漏。 减少重绘和回流&…...
curl访问流式非流式大模型openai api接口
参考:https://platform.openai.com/docs/api-reference/making-requests 命令行访问: 直接是vllm的openai api接口 curl http://192.168.***:10860/v1/chat/completions -H "Content-Type: application/json" -H "Authorization: EMPTY" -d {"mod…...
Go 使用 MongoDB
MongoDB 安装(Docker)安装 MongoDB Go 驱动使用 Go Driver 连接到 MongoDB在 Go 里面使用 BSON 对象CRUD 操作 插入文档更新文档查询文档删除文档 下一步 MongoDB 安装(Docker) 先装个 mongo,为了省事就用 docker 了。 docker 的 daemon.json 加一个国内的源地址…...
什么是g++-arm-linux-gnueabihf
2024年5月3日,周五晚上 g-arm-linux-gnueabihf 是针对 ARM 架构(ARMv7 和 ARMv8)的 Linux 系统开发的 GNU C 编译器套件,可以在 x86 或 x86_64 架构的主机上使用,用于交叉编译 ARM Linux 应用程序和库。 与 gcc-arm-l…...
Unity延时触发的几种常规方法
目录 1、使用协程Coroutine2、使用Invoke、InvokeRepeating函数3、使用Time.time4、使用Time.deltaTime5、使用DOTween。6、使用Vision Timer。 1、使用协程Coroutine public class Test : MonoBehaviour {// Start is called before the first frame updatevoid Start(){ …...
CSS文字描边,文字间隔,div自定义形状切割
clip-path: polygon( 0 0, 68% 0, 100% 32%, 100% 100%, 0 100% );//这里切割出来是少一角的正方形 letter-spacing: 1vw; //文字间隔 -webkit-text-stroke: 1px #fff; //文字描边1px uniapp微信小程序顶部导航栏设置透明,下拉改变透明度 onP…...
XWiki 服务没有正确部署在tomcat中,如何尝试手动重新部署?
1. 停止 Tomcat 服务 首先,您需要停止正在运行的 Tomcat 服务器,以确保在操作文件时不会发生冲突或数据损坏: sudo systemctl stop tomcat2. 清空 webapps 下的 xwiki 目录和 work 目录中相关的缓存 删除 webapps 下的 xwiki 目录和 work …...
【退役之重学Java】关于 Redis
一、Redis 都有哪些数据类型 String 最基本的类型,普通的set和get,做简单的kv缓存hash 这是一个类似map 的一种结构,这个一般可以将结构化的数据,比如一个对象(前提是这个对象没有嵌套其他的对象)给缓存在…...
DateKit
目录 1、 DateKit 1.1、 DaysBetween 1.2、 compareDate 1.3、 dateFormat 1.4、 birthdayFormat 1.5、 getYesterday...
百度智能云数据仓库 Palo 实战课程
通过本课程,您将学习如何使用 Palo 构建高性能、低延迟的分布式数仓服务,掌握数据建模、数据导入、查询优化和系统调优等技能,掌握如何管理和运维 Palo 集群,提高数据处理和分析的效率。同时,我们将进一步向您介绍 Pal…...
服务端JavaScript(Node.js)与去IO编程:Node.js的事件驱动和非阻塞IO模型,它是如何使JavaScript走向后端的
在Node.js中,JavaScript代码运行在V8引擎上。由于JavaScript是单线程语言,一次只能处理一个事件。为了解决这个问题,Node.js引入了事件驱动模型。每个进行IO操作的函数都是异步的,当这个函数被调用的时候,它不会立即执…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
