判断点在多边形内部
0. 介绍
网上资料很多,只简单介绍下,方便自己今后的理解。
1. 射线法
从该点引一条射线出来,如果和多边形有偶数个交点,则点在多边形外部。
因为有入必有出,所以从外部引进来的射线一定是交多边形偶数个点。
如图

这种方法唯一注意点是处理,引出的这条射线包括了多边形的边或者端点。
对此为了保证不重复,我们忽略在该射线上的边,和终点在该射线上的点。
实现
#define MIN(x,y) (x < y ? x : y)
#define MAX(x,y) (x > y ? x : y)
#define INSIDE 0
#define OUTSIDE 1typedef struct {double x,y;
} Point;int InsidePolygon(Point *polygon,int N,Point p)
{int counter = 0;int i;double xinters;Point p1,p2;p1 = polygon[0];for (i=1;i<=N;i++) {p2 = polygon[i % N];if (p.y > MIN(p1.y,p2.y)) // 确保了点在多边形端点上,点的相邻边只被计算了一次。{if (p.y <= MAX(p1.y,p2.y)) {if (p.x <= MAX(p1.x,p2.x)) {// 为使得水平射线与边相交的条件 // y_0 < y <= y_1// min(x_0,x_1) < xif (p1.y != p2.y) {xinters = (p.y-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;// 判断点是否在这条边的左侧if (p1.x == p2.x || p.x <= xinters)counter++;}}}}p1 = p2;}if (counter % 2 == 0)return(OUTSIDE);elsereturn(INSIDE);
}
判断点在边的左侧的示意图

2. 内角和
当点在多边形内时,内角和为 2 π 2 \pi 2π。
实现参考
typedef struct {int h,v;
} Point;int InsidePolygon(Point *polygon,int n,Point p)
{int i;double angle=0;Point p1,p2;for (i=0;i<n;i++) {p1.h = polygon[i].h - p.h;p1.v = polygon[i].v - p.v;p2.h = polygon[(i+1)%n].h - p.h;p2.v = polygon[(i+1)%n].v - p.v;angle += Angle2D(p1.h,p1.v,p2.h,p2.v);}if (ABS(angle) < PI)return(FALSE);elsereturn(TRUE);
}/*Return the angle between two vectors on a planeThe angle is from vector 1 to vector 2, positive anticlockwiseThe result is between -pi -> pi
*/
double Angle2D(double x1, double y1, double x2, double y2)
{double dtheta,theta1,theta2;theta1 = atan2(y1,x1);theta2 = atan2(y2,x2);dtheta = theta2 - theta1;while (dtheta > PI)dtheta -= TWOPI;while (dtheta < -PI)dtheta += TWOPI;return(dtheta);
}
3. 同侧法
当多边形为凸多边形时,我们可以判断该点是否在各个边形成的直线的一侧;
来判断点是否在多边形的内部。实际上就是一个线性规划问题。
凹多边形的凹角附近不满足该条件。
只需要判断
( x − x 0 ) ( y 1 − y 0 ) + ( y − y 0 ) ( x 0 − x 1 ) (x-x_0)(y_1-y_0)+(y-y_0)(x_0-x_1) (x−x0)(y1−y0)+(y−y0)(x0−x1)
的值即可判断,点在多边形边的哪一侧。
给定两个点 P 0 ( x 0 , y 0 ) , P 1 ( x 1 , y 1 ) P_0(x_0,y_0),P_1(x_1,y_1) P0(x0,y0),P1(x1,y1),直线一般方程 A x + B y + c = 0 Ax+By+c=0 Ax+By+c=0推导。
-  x 0 = x 1 x_0=x_1 x0=x1
 x − x 0 = 0 x-x_0=0 x−x0=0
-  x 0 ≠ x 1 x_0 \ne x_1 x0=x1
 直线点斜式方程 y = k x + b k = y 1 − y 0 x 1 − x 0 带入 P 0 , P 1 b = y 0 − k x 0 b = y 1 − k x 1 2 b = ( y 0 + y 1 ) − k ( x 0 + x 1 ) 带入 k ,化简得到 b = x 1 y 0 − x 0 y 1 x 1 − x 0 化为一般式子得到 ( y 1 − y 0 ) x + ( x 0 − x 1 ) y + x 1 y 0 − x 0 y 1 = 0 更加统一的形式 ( y 1 − y 0 ) ( x − x 0 ) + x 0 y 1 − x 0 y 0 + ( x 0 − x 1 ) ( y − y 0 ) + x 0 y 0 − x 1 y 0 + x 1 y 0 − x 0 y 1 = 0 合并化简得到 ( x − x 0 ) ( y 1 − y 0 ) − ( y − y 0 ) ( x 1 − x 0 ) = 0 直线点斜式方程y=kx+b\\ k=\frac{y_1- y_0}{x_1-x_0}\\ 带入P_0,P_1\\ b=y_0-kx_0\\ b=y_1-kx_1\\ 2b=(y_0+y_1)-k(x_0+x_1)\\ 带入k,化简得到\\ b=\frac{x_1y_0-x_0y_1}{x_1-x_0}\\ 化为一般式子得到\\ (y_1-y_0)x+(x_0-x_1)y+x_1y_0-x_0y_1=0\\ 更加统一的形式\\(y_1-y_0)(x-x_0)+x_0y_1-x_0y_0+\\(x_0-x_1)(y-y_0)+x_0y_0-x_1y_0+x_1y_0-x_0y_1=0\\ 合并化简得到\\ (x-x_0)(y_1-y_0)-(y-y_0)(x_1-x_0)=0 直线点斜式方程y=kx+bk=x1−x0y1−y0带入P0,P1b=y0−kx0b=y1−kx12b=(y0+y1)−k(x0+x1)带入k,化简得到b=x1−x0x1y0−x0y1化为一般式子得到(y1−y0)x+(x0−x1)y+x1y0−x0y1=0更加统一的形式(y1−y0)(x−x0)+x0y1−x0y0+(x0−x1)(y−y0)+x0y0−x1y0+x1y0−x0y1=0合并化简得到(x−x0)(y1−y0)−(y−y0)(x1−x0)=0
- 将 x 0 = x 1 x_0=x_1 x0=x1代入 ( x − x 0 ) ( y 1 − y 0 ) − ( y − y 0 ) ( x 1 − x 0 ) = 0 (x-x_0)(y_1-y_0)-(y-y_0)(x_1-x_0)=0 (x−x0)(y1−y0)−(y−y0)(x1−x0)=0;
 得到 x − x 0 = 0 x-x_0=0 x−x0=0
归纳可得直线一般式方程
  ( y 1 − y 0 ) x + ( x 0 − x 1 ) y + x 1 y 0 − x 0 y 1 = 0 或 ( x − x 0 ) ( y 1 − y 0 ) − ( y − y 0 ) ( x 1 − x 0 ) = 0 (y_1-y_0)x+(x_0-x_1)y+x_1y_0-x_0y_1=0\\ 或\\ (x-x_0)(y_1-y_0)-(y-y_0)(x_1-x_0)=0 (y1−y0)x+(x0−x1)y+x1y0−x0y1=0或(x−x0)(y1−y0)−(y−y0)(x1−x0)=0
4. 原文
eecs
相关文章:
 
判断点在多边形内部
0. 介绍 网上资料很多,只简单介绍下,方便自己今后的理解。 1. 射线法 从该点引一条射线出来,如果和多边形有偶数个交点,则点在多边形外部。 因为有入必有出,所以从外部引进来的射线一定是交多边形偶数个点。 如图…...
livox雷达斜装修改
fast_lio中的mid360.yaml中的外参 extrinsic_est_en: false # true: enable the online estimation of IMU-LiDAR extrinsicextrinsic_T: [ -0.011, -0.02329, 0.04412 ]extrinsic_R: [ 1, 0, 0,...
 
【Spring】初识 Spring AOP(面向切面编程)
目录 1、介绍AOP 1.1、AOP的定义 1.2、AOP的作用 1.3、AOP的核心概念及术语 2、AOP实现示例 3、EnableAspectJAutoProxy注解 1、介绍AOP 1.1、AOP的定义 AOP(Aspect Orient Programming),直译过来就是面向切面编程,AOP 是一…...
k8s各个组件的作用
Kubernetes(K8s)是一个开源的容器编排平台,用于自动化计算机容器化应用程序的部署、扩展和管理。以下是 Kubernetes 中的关键组件及其作用: API 服务器(API Server): 作为集群中所有资源操作的入…...
 
Spring Cloud 整合Sentinel
1、引入依赖 版本说明 alibaba/spring-cloud-alibaba Wiki GitHub 父pom <spring.cloud.version>Hoxton.SR12</spring.cloud.version> <spring.cloud.alibaba.version>2.2.10-RC1</spring.cloud.alibaba.version>Sentinel应用直接引用starter <…...
 
Java入门基础学习笔记4——开发Helloworld入门程序
Java程序开发的三个步骤: 1)编写代码 2)编译代码 3)运行代码 注意事项: 第一个java程序建议使用记事本来编写。 建议代码文件名全英文、首字母大写、满足驼峰模式,源代码文件的后缀必须是.java 注意&a…...
了解WebSocket
1.概念: WebSocket是一种在单个TCP连接上进行全双工通信的协议,属于应用层协议。 WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。在WebSocket API中,浏览器和服务器只需要完成一次握…...
 
从开发角度理解漏洞成因(02)
文章目录 文件上传类需求文件上传漏洞 文件下载类需求文件下载漏洞 扩展 留言板类(XSS漏洞)需求XSS漏洞 登录类需求cookie伪造漏洞万能密码登录 持续更新中… 文章中代码资源已上传资源,如需要打包好的请点击PHP开发漏洞环境(SQL注…...
 
Web实时通信的学习之旅:轮询、WebSocket、SSE的区别以及优缺点
文章目录 一、通信机制1、轮询1.1、短轮询1.2、长轮询 2、Websocket3、Server-Sent Events 二、区别1、连接方式2、协议3、兼容性4、安全性5、优缺点5.1、WebSocket 的优点:5.2、WebSocket 的缺点:5.3、SSE 的优点:5.4、SSE 的缺点࿱…...
 
TMS320F280049 CLB模块--LUT4 OUTLUT(4)
LUT4 示意图如下: OUTLUT 示意图如下: 寄存器 参考文档: TMS320F28004x Real-Time Microcontrollers Technical Reference Manual (Rev. G)...
 
功能测试_分类_用例_方法
总结 测试分类 按阶段分类 是否查看源代码分类 是否运行分类 是否自动化 其他分类 软件质量模型 开发模型-瀑布模型 测试过程模型 v w 测试用例八大要素 用例编号 用例标题 …...
 
[沫忘录]MySQL 锁
[沫忘录]MySQL 锁 锁能够协调多线程或多进程并发访问某资源产生的数据冲突与错乱。而在数据库中,锁也是协调数据库访问的有效工具。 全局锁 能够锁住当前服务器所有数据库及其表。后续所有事务都只能进行读操作,而不能进行写操作或表属性更改。 典型…...
 
噪声嵌入提升语言模型微调性能
在自然语言处理(NLP)的快速发展中,大模型(LLMs)的微调技术一直是研究的热点。最近,一篇名为《NEFTUNE: NOISY EMBEDDINGS IMPROVE INSTRUCTION FINETUNING》的论文提出了一种新颖的方法,通过在训…...
XML文档基本语法
XML文档基本语法包括以下几个知识点: 开始标记(Start Tag):开始标记是XML元素的起始符号,由左尖括号(<)和元素名称组成。例如,是一个开始标记,表示一个名为"book…...
git开发工作流程
git开发工作流程 (1)先将远程代码pull到本地 (2)在本地上分支上进行开发 (3)开发完之后,push到远程分支 (4)由远程的master进行所有分支合并...
JDK生成https配置
keytool -genkey -v -alias tomcat -keyalg RSA -keystore D:\https证书\weChat.keystore -validity 36500 -keypass 250250 keytool -importkeystore -srcstoretype JKS -srckeystore D:\https证书\weChat.keystore -srcstorepass 250250 -srcalias tomcat -srckeypass 25025…...
 
通过 Java 操作 redis -- set 集合基本命令
目录 使用命令 sadd ,smembers 使用命令 sismember 使用命令 scard 使用命令 spop 使用命令 sinter,sinterstore,sunion,sunionstore,sdiff,sdiffstore 关于 redis set 集合类型的相关命令推荐看Redis …...
 
WebSocket前后端建立以及使用
1、什么是WebSocket WebSocket 是一种在 Web 应用程序中实现双向通信的协议。它提供了一种持久化的连接,允许服务器主动向客户端推送数据,同时也允许客户端向服务器发送数据,实现了实时的双向通信。 这部分直接说你可能听不懂;我…...
 
C++数据结构之链表树图的存储
本文主要介绍用数组存储,结构只做简单介绍 目录 文章目录 前言 结构体实现 1、链表的存储 2、树的存储 3、图的存储 数组实现 1、链表实现 2、树和图的实现 总结 前言 在正常工程中,我们通常使用结构体或者类,来定义并使用如链表…...
 
又一位互联网大佬转行当网红,能写进简历么?
最近半个月,有两个中年男人仿佛住进了热搜。 一个是刚刚辟谣自己“卡里没有冰冷的 40 亿”的雷军,另一个则是在今年年初就高呼“如果有可能,企业家都要去当网红”的 360 创始人周鸿祎。 他也确实做到了。 先是作为当年 3Q 大战的当事人&…...
 
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
 
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
 
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
 
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
 
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
