Python混淆矩阵用例
📜用例
- 📜Python社群纽带关系谱和图神经 | 📜多标签混淆矩阵模型 | 📜二元分类分层混淆矩阵模型 | 📜混淆矩阵评估特征归因
✒️梗概
混淆矩阵是评估分类模型性能的有用工具。 该矩阵通过将预测值与实际值进行比较,可以深入了解模型对数据进行分类的程度。 理解和解释混淆矩阵可能具有挑战性,特别是对于机器学习的初学者来说。 然而,理解每个单元代表的内容至关重要,因为它可以帮助您评估模型的优点和缺点。
我们将使用 Python 中的 Scikit-learn 库深入讨论混淆矩阵。 我们将带您了解混淆矩阵到底是什么、为什么它很重要以及如何有效地解释其结果。 此外,我们将引导您构建一个简单的机器学习模型,作为示例,该模型根据花卉的测量值对花卉种类进行分类。
混淆矩阵是用于评估机器学习算法性能的表格。它显示了算法在每个类别中正确或错误分类的样本数量。混淆矩阵有两个维度:实际维度和预测维度。在二元分类中,只有两个类(正类和负类),它看起来像这样:
Predicted Positive Predicted Negative Actual Positive True Positive (TP) False Negative (FN) Actual Negative False Positive (FP) True Negative (TN) \begin{array}{|l|c|l|} \hline & \text { Predicted Positive } & \text { Predicted Negative } \\ \hline \text { Actual Positive } & \text { True Positive (TP) } & \text { False Negative (FN) } \\ \hline \text { Actual Negative } & \text { False Positive (FP) } & \text { True Negative (TN) } \\ \hline \end{array} Actual Positive Actual Negative Predicted Positive True Positive (TP) False Positive (FP) Predicted Negative False Negative (FN) True Negative (TN)
让我们考虑一个二元分类问题,其中有两个类:“正”和“负”。
- 真正例(TP):这是指模型在实际情况下正确预测实例属于正类。换句话说,TP是指被模型正确预测为正例的正例实例的数量。
- 真负例(TN):这是指模型在实际情况下正确预测实例属于负类。换句话说,TN是指被模型正确预测为负例的负例数量。
- 假负例(FP):这是指模型错误地预测某个实例属于正类,而实际上它属于负类。 换句话说,FP指的是被模型错误预测为正例的负例的数量。
- 假负例(FN):这是指模型错误地预测某个实例属于负类,而实际上它属于正类。 换句话说,FN 指的是被模型错误预测为负例的正例数量。
混淆矩阵是机器学习中评估分类模型性能的常用工具。以下是一些现实世界或业务用例,混淆矩阵可能会有所帮助:
- 欺诈检测:银行使用机器学习模型来识别欺诈交易。 混淆矩阵通过显示真阳性、真阴性、假阳性和假阴性的数量,帮助银行了解模型的执行情况
- 医疗诊断:医院使用机器学习模型来诊断患有某种疾病的患者。 混淆矩阵通过显示真阳性、真阴性、假阳性和假阴性的数量,帮助医生了解模型的准确性。
- 客户流失预测:公司使用机器学习模型来预测哪些客户可能会流失(停止使用他们的服务)。 混淆矩阵通过显示真阳性、真阴性、假阳性和假阴性的数量,帮助公司了解模型的表现如何。
- 情绪分析:社交媒体平台使用机器学习模型来分析用户评论并确定它们是正面还是负面。 混淆矩阵通过显示真阳性、真阴性、假阳性和假阴性的数量,帮助平台了解模型的准确性。
- 图像分类:电子商务网站使用机器学习模型自动将产品图像分类为不同类别,例如服装或电子产品。 混淆矩阵通过显示每个类别的真阳性、真阴性、假阳性和假阴性的数量,帮助他们了解图像分类算法的执行情况。
让我们看一个对 Scikit-Learn 的乳腺癌数据集进行二元分类的示例。
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrixdata = load_breast_cancer()X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, random_state=0)model = LogisticRegression()
model.fit(X_train, y_train)y_pred = model.predict(X_test)cm = confusion_matrix(y_test, y_pred)print("Confusion Matrix:")
print(cm)
使用Scikit-Learn中的confusion_matrix只会显示混淆矩阵的Numpy数组,但如果想绘制它,我们可以使用Scikit-Learn中的plot_confusion_matrix函数,如下所示:
from sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(model, X_test, y_test)
这将使用 Matplotlib 输出混淆矩阵图:
现在让我们探讨一个使用多个类(而不仅仅是 2 个二元类)的混淆矩阵的示例。
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, plot_confusion_matrix
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as pltiris = load_iris()
X = iris.data
y = iris.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)y_pred = clf.predict(X_test)cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(clf, X_test, y_test)
行代表真实类别,列代表预测类别。 对角线元素(从左上到右下)显示每个类别的正确预测数量。 非对角线元素显示错误分类。 例如,在我们的例子中,我们可以看到 0 类的 15 个样本被正确预测,没有错误,但是我们可以看到 1 类有两个错误分类为 2 类。
参阅:亚图跨际
相关文章:
Python混淆矩阵用例
📜用例 📜Python社群纽带关系谱和图神经 | 📜多标签混淆矩阵模型 | 📜二元分类分层混淆矩阵模型 | 📜混淆矩阵评估特征归因 ✒️梗概 混淆矩阵是评估分类模型性能的有用工具。 该矩阵通过将预测值与实际值进行比较&…...
【负载均衡式在线OJ项目day6】源文件路由功能及文件版题库构建
一.前言 前文讲到了OJ模块的设计思路,毫无疑问这是一个网络服务,我们先使用httplib,将源文件的路由功能实现,先把框架写好,后续再更改回调方法。 随后计划编写Modify模块,提供增删查改题库的功能(主要是查…...
841.钥匙和房间
841.钥匙和房间 题目链接:841.钥匙和房间 代码如下: class Solution { public:bool canVisitAllRooms(vector<vector<int>>& rooms) {vector<bool> visited(rooms.size(),false);dfs(rooms,visited,0);// bfs(rooms,visited,0)…...
【OceanBase 系列】—— 什么是冻结和转储
文章出处:OceanBase分布式数据库-海量数据 笔笔算数 本文主要介绍什么是冻结和转储。 适用版本 OceanBase 数据库所有版本。 冻结 冻结是指将 Active MEMTable 转化为 Frozen MEMTable 的过程。 冻结的触发方式 手动触发:alter system minor freeze…...
智慧园区能耗管控系统,3D可视化开发都需要哪些技术栈?
数据可视化: 数据可视化是将数据通过图表、图形、地图等可视化方式展示,使得数据更加直观、易于理解和分析。在智慧园区能耗管控系统中,可以使用各种图表库(如Echarts、Highcharts)和可视化工具(如Tableau…...
Spring之推断构造方法源码解析
Spring之推断构造方法源码解析 简介 在Spring框架中,构造方法注入是一种常见的依赖注入方式。而在构造方法注入中,推断构造方法是一种特殊的方式,它可以根据参数类型自动选择合适的构造方法进行注入。本文将深入解析Spring框架中推断构造方…...
【计算机网络】计算机网络的定义和分类
🚩本文已收录至专栏:计算机网络学习之旅 一.定义 计算机网络并没有一个精确和统一的定义,在计算机网络发展的不同阶段,人们对计算机网络给出了不同的定义,这些定义反映了当时计算机网络技术的发展水平。 例如计算机…...
天机学堂—学习辅助功能(含场景问答和作业)
我的课表 需求分析 原型图 管理后台 用户端 流程图 数据设计 接口设计 支付成功报名课程后, 加入到我的课表(MQ)分页查询我的课表查询我正在学习的课程根据id查询指定课程的学习状态删除课表中的某课程 代码实现 数据表设计 添加课程到课表(非标准接口&#x…...
Stable Diffusion AI绘画
我们今天来了解一下最近很火的SD模型 ✨在人工智能领域,生成模型一直是研究的热点之一。随着深度学习技术的飞速发展,一种名为Stable Diffusion的新型生成模型引起了广泛关注。Stable Diffusion是一种基于概率的生成模型,它可以学习数据的潜…...
linux性能监控之sar
1.sar命令介绍 sar是一个非常全面的分析工具,可以对文件的读写,系统调用的使用情况,磁盘IO,CPU相关使用情况,内存使用情况,进程活动等都可以进行有效的分析。 sar工具将对系统当前的状态进行取样&am…...
react框架对Excel文件进行上传和导出
1.首先需要安装xlsx第三方的库库 引入插件 npm install xlsx在react引入 import * as XLSX from xlsx;1,首先设置jsx部分的 以下代码包含有导入excel文件和导出excel文件,读着可以根据需要,自己选择想要实现的功能 代码如下࿰…...
【前端】-【前端文件操作与文件上传】-【前端接受后端传输文件指南】
目录 前端文件操作与文件上传前端接受后端传输文件指南 前端文件操作与文件上传 一、前端文件上传有两种思路: 二进制blob传输:典型案例是formData传输,相当于用formData搭载二进制的blob传给后端base64传输:转为base64传输&…...
【IC前端虚拟项目】验证环境env与base_teat思路与编写
【IC前端虚拟项目】数据搬运指令处理模块前端实现虚拟项目说明-CSDN博客 上一篇里解决了最难搞的axi_ram_model,接下来呢就会简单又常规一些了,比如这一篇要说的env和base_test的搭建。在这里我用了gen_uvm_tb脚本: 【前端验证】验证自动化脚本的最后一块拼图补全——gen_t…...
使用Remix部署智能合约到币安链(Remix的操作介绍 币安链合约的部署) 点赞收藏哦
大家好,我是程序员大猩猩呀。 据我所知,很多人进入币圈之后,想要通过炒币一夜暴富!另一部分人呢他们希望自己能创建一个项目,然后发行自己的数字货币然后暴富。 不管是什么方式吧,只要不违法,…...
为什么Redis6.0引入了多线程
Redis 6.0引入了多线程,主要原因有以下几点: 提高网络I/O的吞吐量:多线程可以更有效地处理大量的并发连接和请求,特别是在多核心服务器上。通过使用多线程来处理读写网络套接字,Redis能够更充分地利用系统资源&#x…...
速盾:高防ip和高防cdn有什么相同点?
高防IP(Dedicated IP)和高防CDN(Content Delivery Network)都是用来保护网站免受各种网络攻击的技术手段,它们在一定程度上具有相同的作用和效果。下面将详细介绍它们的相同点。 首先,高防IP和高防CDN都能…...
设计模式之拦截过滤器模式
想象一下,在你的Java应用里,每个请求就像一场冒险旅程,途中需要经过层层安检和特殊处理。这时候,拦截过滤器模式就化身为你最可靠的特工团队,悄无声息地为每一个请求保驾护航,确保它们安全、高效地到达目的…...
【联通支付注册/登录安全分析报告】
联通支付注册/登录安全分析报告 前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨…...
c++ - 在循环中使用迭代器删除 unordered_set 中的元素
标签 c unordered-set 请考虑以下代码: Class MyClass 为自定义类:class MyClass { public:MyClass(int v) : Val(v) {}int Val; };然后下面的代码将在调用 it T.erase(it); 之后在循环中导致 Debug Assertion Failed: unordered_set<MyClass*> T; unordered_set<…...
深入了解哈希映射(HashMap)
一、哈希映射(HashMap)简介 在计算机科学中,哈希映射(HashMap)是一种基于键值对(Key-Value pair)存储数据的数据结构,它提供了高效的数据查找、插入和删除操作。哈希映射的核心思想…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
