当前位置: 首页 > news >正文

【机器学习】Reinforcement Learning-强化学习基本概念

1、Q值与V值

1.1 Q值和V值的定义

Q值:也称为动作价值函数,评估动作的价值,它代表了智能体选择这个动作后,一直到最终状态奖励总和期望,表示为Q(s, a),其中 s是状态,a是动作。

V值:评估状态的价值,也称为状态价值函数,表示为V(s),其中s是状态。它代表了智能体在这个状态下,一直到最终状态的奖励总和期望。V值与动作无关只与状态有关。

Q值和V值的概念是一致的,都是衡量在马可洛夫树上某一个节点的价值。只不过V值衡量的是状态节点的价值,而Q值衡量的是动作节点的价值。

1.2 Q值和V值的计算

某状态S的V值,可以这样计算:

  1. 我们从S点出发,并影分身出若干个自己;
  2. 每个分身按照当前的策略 选择行为;
  3. 每个分身一直走到最终状态,并计算一路上获得的所有奖励总和;
  4. 我们计算每个影分身获得的平均值,这个平均值就是我们要求的V值。

总结就是:从某个状态,按照策略 ,走到最终状态很多很多次;最终获得奖励总和的平均值,就是V值。

计算某个状态S0下的一个动作A的Q值:

  1.  我们就可以从A这个节点出发,使用影分身之术;
  2. 每个影分身走到最终状态,并记录所获得的奖励;
  3. 求取所有影分身获得奖励的平均值,这个平均值就是我们需要求的Q值。

总结就是:从某个状态选取动作A,走到最终状态很多很多次;最终获得奖励总和的平均值,就是Q值。与V值不同,Q值和策略并没有直接相关,而与环境的状态转移概率相关,而环境的状态转移概率是不变的。

1.3 Q值和V值的关系

一个状态的V值,就是这个状态下的所有动作的Q值,在策略下的期望。

【知乎】如何理解强化学习中的Q值和V值?

相关文章:

【机器学习】Reinforcement Learning-强化学习基本概念

1、Q值与V值 1.1 Q值和V值的定义 Q值:也称为动作价值函数,评估动作的价值,它代表了智能体选择这个动作后,一直到最终状态奖励总和的期望,表示为Q(s, a),其中 s是状态,a是动作。 V值&#xff…...

vim编辑器---(1)vim编辑器介绍?

(1)vim编辑器介绍? 1 目录 (a)IC简介 (b)vim简介 (c)Verilog简介 (d)vim编辑器介绍? (e)结束 1 IC简介…...

解密 Unix 中的 “rc“ 后缀:自定义你的工作环境

在文件名中,rc 通常表示 “run commands”(运行命令)或者 “runtime configuration”(运行时配置)。这种命名惯例源自早期的 Unix 系统,用于指示这些文件包含了一系列要在程序运行时执行的命令或配置选项。…...

Java使用csv导出多字段大数据文件(无需写实体映射,自动遍历)

csv工具类CsvUtils 此处使用LinkedHashMap链表哈希表,实现键值中值为空时仍存在数据以及保证顺序与sql顺序一致。 package com.xxx.xxx.utils;import lombok.val; import org.springframework.util.CollectionUtils; import javax.servlet.http.HttpServletRespons…...

Redis 本机无法访问

问题 我在服务器上有两个 Redis 实例,服务端口号分别是 6379 和 6380,Redis 服务器地址假设为 10.0.0.12。其中 6379 这个实例不需要密码即可访问,6380 需要密码访问。 在正常使用几天后,本机突然无法访问 6379 这个实例&#x…...

【论文笔记】Training language models to follow instructions with human feedback B部分

Training language models to follow instructions with human feedback B 部分 回顾一下第一代 GPT-1 : 设计思路是 “海量无标记文本进行无监督预训练少量有标签文本有监督微调” 范式;模型架构是基于 Transformer 的叠加解码器(掩码自注意…...

stm32——OLED篇

技术笔记! 一、OLED显示屏介绍(了解) 1. OLED显示屏简介 二、OLED驱动原理(熟悉) 1. 驱动OLED驱动芯片的步骤 2. SSD1306工作时序 三、OLED驱动芯片简介(掌握) 1. 常用SSD1306指令 2. …...

重卡生产流程的可视化管理与优化

重卡车间可视化是一个将车间内部生产流程、设备状态及人员配置直观展现的技术手段,确保制造过程的每个环节都在最优状态下运行。 在重卡制造领域,从底盘组装、车身焊接、涂装到最终的总装和检验,每一个工作过程都至关重要,对于保…...

软考-软件工程

软件工程概述 软件工程指的是应用计算机科学、数学及管理科学等原理,以工程化的原则和方法来解决软件 问题的工程,目的是提高软件生产率、提高软件质量、降低软件成本。 概述: 软件开发模型:指导软件开发的体系 需求分析确定软件…...

Agent AI智能体:未来社会的角色、发展路径与挑战

目录 引言 一、Agent AI智能体的发展路径 1. 技术进步与智能化水平提升 2. 应用场景拓展与普及 二、Agent AI智能体在未来社会中的角色 1. 提高生产效率与生活品质 2. 促进社会进步与发展 三、Agent AI智能体可能带来的挑战 1. 隐私与安全问题 2. 就业与社会结构变革 …...

Vue 3.x组件生命周期

一、Vue 2 VS Vue 3 从 Vue 2 升级到 Vue 3 ,在保留对 Vue 2 的生命周期支持的同时,Vue 3 也带来了一定的调整。Vue 2 的生命周期写法名称是 Options API (选项式 API ), Vue 3 新的生命周期写法名称是 Composition API (组合式 API )。 Vue 3 组件默认支持 Options A…...

onnx模型截取部分

这个是有需求的,比如有多个输入节点,我只用其中几个,或有多个输出节点,我只用其中几个。 比如这个输入,我们可以直接把transpose去掉,用类pytorch的N,C,H,W的格式输入。 还有如下输出: tran…...

中职智慧校园建设内容规划

1. 渠道先行 1) IT根底设施渠道是支撑智慧学校使用体系所必需的运转环境,是首要需求建造的内容,但是要遵从有用准则,IT设备开展很快,更新很快,不要片面追求全而新; 2) 使用根底渠道是支撑智慧学校使用体系作…...

GitLab CI/CD的原理及应用详解(一)

本系列文章简介: 在当今快速变化的软件开发环境中,持续集成(Continuous Integration, CI)和持续交付(Continuous Delivery, CD)已经成为提高软件开发效率、确保代码质量以及快速响应市场需求的重要手段。Gi…...

Python混淆矩阵用例

📜用例 📜Python社群纽带关系谱和图神经 | 📜多标签混淆矩阵模型 | 📜二元分类分层混淆矩阵模型 | 📜混淆矩阵评估特征归因 ✒️梗概 混淆矩阵是评估分类模型性能的有用工具。 该矩阵通过将预测值与实际值进行比较&…...

【负载均衡式在线OJ项目day6】源文件路由功能及文件版题库构建

一.前言 前文讲到了OJ模块的设计思路,毫无疑问这是一个网络服务,我们先使用httplib,将源文件的路由功能实现,先把框架写好,后续再更改回调方法。 随后计划编写Modify模块,提供增删查改题库的功能(主要是查…...

841.钥匙和房间

841.钥匙和房间 题目链接&#xff1a;841.钥匙和房间 代码如下&#xff1a; class Solution { public:bool canVisitAllRooms(vector<vector<int>>& rooms) {vector<bool> visited(rooms.size(),false);dfs(rooms,visited,0);// bfs(rooms,visited,0)…...

【OceanBase 系列】—— 什么是冻结和转储

文章出处&#xff1a;OceanBase分布式数据库-海量数据 笔笔算数 本文主要介绍什么是冻结和转储。 适用版本 OceanBase 数据库所有版本。 冻结 冻结是指将 Active MEMTable 转化为 Frozen MEMTable 的过程。 冻结的触发方式 手动触发&#xff1a;alter system minor freeze…...

智慧园区能耗管控系统,3D可视化开发都需要哪些技术栈?

数据可视化&#xff1a; 数据可视化是将数据通过图表、图形、地图等可视化方式展示&#xff0c;使得数据更加直观、易于理解和分析。在智慧园区能耗管控系统中&#xff0c;可以使用各种图表库&#xff08;如Echarts、Highcharts&#xff09;和可视化工具&#xff08;如Tableau…...

Spring之推断构造方法源码解析

Spring之推断构造方法源码解析 简介 在Spring框架中&#xff0c;构造方法注入是一种常见的依赖注入方式。而在构造方法注入中&#xff0c;推断构造方法是一种特殊的方式&#xff0c;它可以根据参数类型自动选择合适的构造方法进行注入。本文将深入解析Spring框架中推断构造方…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...