利用预训练模型和迁移学习打造智能狗门
引言
在深度学习的世界里,预训练模型和迁移学习是两个强大的概念,它们允许我们利用已有的模型和知识来解决新的问题。在本博客中,我们将探索如何使用预训练的模型来创建一个智能狗门,这个系统将能够识别狗并允许它们进入,同时将其他动物或物体排除在外。
预训练模型的力量
预训练模型是已经在大量数据上训练过的神经网络,它们通常在特定任务上表现出色,比如图像分类。这些模型可以在不同的任务上进行微调,而不需要从头开始训练整个网络,这大大节省了时间和资源。
加载预训练模型
在Keras中,许多流行的预训练模型都可以轻松加载。例如,我们可以使用VGG16模型,它已经在ImageNet数据集上进行了训练,该数据集包含了1000个类别的图像。
from tensorflow.keras.applications import VGG16# 加载预训练的VGG16模型
model = VGG16(weights="imagenet")
预训练模型的结构
VGG16模型是一个深度卷积神经网络,它具有多个卷积层和全连接层。预训练模型的输入图像大小通常是224x224像素,输出是一个包含1000个类别概率的向量。
model.summary()
数据准备
为了使用预训练模型进行迁移学习,我们需要准备输入数据,使其符合模型的输入要求。这包括调整图像大小和归一化。
from tensorflow.keras.preprocessing import image as image_utils
from tensorflow.keras.applications.vgg16 import preprocess_inputdef load_and_process_image(image_path):# 加载图像并调整大小image = image_utils.load_img(image_path, target_size=(224, 224))# 将图像转换为数组image = image_utils.img_to_array(image)# 添加一个维度,以模拟批量大小为1的情况image = image.reshape(1, 224, 224, 3)# 预处理图像以匹配ImageNet数据集image = preprocess_input(image)return image
迁移学习
迁移学习是一种技术,它允许我们将在一个任务上训练的模型应用到另一个任务上。在本例中,我们将使用VGG16模型对新图像进行分类,但我们将只使用模型的输出层,并且重新训练这部分以适应我们的新数据集。
预处理图像
在进行预测之前,我们需要对新图像进行与ImageNet数据集相同的预处理。
processed_image = load_and_process_image("data/doggy_door_images/brown_bear.jpg")
进行预测
使用预训练模型对图像进行预测,并将输出概率解码为可读的类别。
from tensorflow.keras.applications.vgg16 import decode_predictionsdef readable_prediction(image_path):# 显示图像show_image(image_path)# 加载并预处理图像image = load_and_process_image(image_path)# 进行预测predictions = model.predict(image)# 打印可读的预测结果print('Predicted:', decode_predictions(predictions, top=3))readable_prediction("data/doggy_door_images/happy_dog.jpg")
智能狗门逻辑
我们将使用模型的预测结果来控制一个虚拟的狗门。如果模型预测图像为狗,门将打开允许狗进入;如果预测为猫,门将保持关闭;对于其他类别,门也不会打开。
def doggy_door(image_path):show_image(image_path)image = load_and_process_image(image_path)preds = model.predict(image)# 根据预测的类别编号决定是否开门if 151 <= np.argmax(preds) <= 268:print("Doggy come on in!")elif 281 <= np.argmax(preds) <= 285:print("Kitty stay inside!")else:print("You're not a dog! Stay outside!")# 测试智能狗门
doggy_door("data/doggy_door_images/brown_bear.jpg")
doggy_door("data/doggy_door_images/happy_dog.jpg")
doggy_door("data/doggy_door_images/sleepy_cat.jpg")
结语
通过使用预训练的VGG16模型和迁移学习,我们能够快速创建一个智能狗门系统。这种方法不仅节省了训练时间,还提高了模型的性能。随着深度学习社区的不断发展,预训练模型和迁移学习将在未来的机器学习项目中扮演越来越重要的角色。
相关文章:
利用预训练模型和迁移学习打造智能狗门
引言 在深度学习的世界里,预训练模型和迁移学习是两个强大的概念,它们允许我们利用已有的模型和知识来解决新的问题。在本博客中,我们将探索如何使用预训练的模型来创建一个智能狗门,这个系统将能够识别狗并允许它们进入…...
常用Linux命令详细总结
一、文档编辑、过滤、查看命令 1、cp 复制文件和目录 -a 复制文件并保持文件属性 -d 若源文件为链接文件,则复制链接文件属性而非文件本身 -i 覆盖文件前提示,如果不要提示,在命令前加上\ -r 递归复制,通常用于目录的复制 …...
基于SpringBoot的竹宣非遗宣传网站
摘要 随着互联网的普及和数字化时代的到来,竹编等非物质文化遗产的保护与传承面临新的机遇和挑战。该研究旨在使用SpringBoot后端框架与Vue前端框架,构建一个竹编非遗宣传网站,通过丰富的展示形式和交互体验,提升公众对竹编这一非…...
怎么清理服务器的C盘?
有时候我们经常会遇到C盘被占满的情况,C盘被占满的原因有很多,下面我们就来分析下有可能导致C盘占满的原因: 第一种情况:中毒 打开服务器任务管理器选择进程,并且勾选显示所有用户的进程,我们可以点击映像…...
动态规划----股票买卖问题(详解)
目录 一.买卖股票的最佳时机: 二.买卖股票的最佳时机含冷冻期: 三.买卖股票的最佳时期含⼿续费: 四.买卖股票的最佳时机III: 五.买卖股票的最佳时机IV: 买卖股票的最佳时机问题介绍:动态规划买卖股票的最佳时机是一个经典的…...
Unity射线检测不到MeshCollider的原因
当我们构建的模型是单面模型时,就会出现射线检测不到MeshCollider的问题,对于渲染,我们可以Cull Off来实现双面渲染,而在射线检测时,Unity提供了一个API来控制是否检测背面:Physics.queriesHitBackfaces 案…...
ssrf初步
一,简介 全称:Server-Side Request Forgery(中文:服务器端请求伪造) 攻击者从服务端发起请求,让服务器连接任意外部系统,从而泄露敏感数据。主要利用各种协议的请求伪造,例如php协…...
linux 安装 mangodb 并设置服务开机自启
1、下载 wget http://mosquitto.org/files/source/mosquitto-1.6.8.tar.gz 2、解压 tar -zxvf mosquitto-1.6.8.tar.gz 3、编译安装cd mosquitto-1.6.8 make sudo make install4、在当前目录。进入mosquitto服务文件存放的文件夹 cd service/systemd可以看到3个文件 点击read…...
Virtualbox7.0.10+Ubuntu20.04网络配置
虚拟机部署在服务器上时,需要进行网络配置,使虚拟机和服务器在同网段下,以保证内网的终端可以访问到虚拟机 1. 设置虚拟机 打开虚拟机设置,选择“网络”,将网卡设为桥接网卡 注:设置前,需要先…...
设计模式之服务定位器模式
想象一下,你的Java应用是一座庞大的迷宫,里面藏着无数宝贵的服务宝藏,而你正需要一张精确的藏宝图来指引方向,迅速找到并利用这些宝藏。服务定位器模式,正是这样一张神奇的地图,它帮你动态定位并获取应用中…...
冯喜运:5.12黄金回撤继续上涨,下周原油走势分析
【黄金消息面分析】:本周,黄金市场迎来了自4月中旬以来的最佳单周表现。周五(3月9日),金价攀升至2360.54美元/盎司,涨幅0.62%,而纽约商品交易所6月交割的黄金期货价格上涨1.5%,收报2…...
JavaEE企业级开发中常用的JDK7和JDK8的时间类
JDK7时间类 全世界的时间有一个统一的计算标准 在同一条经线上的时间是一样的 格林威治时间 简称GMT 计算核心 地球自转一天是24小时 太阳直射正好是12小时 但是误差太大 现在用原子钟来代替 用铯原子震动的频率来计算时间,作为世界的标准时间UTC 中国标准时间…...
leetcode 2316.统计无向图中无法互相到达点对数
思路:并查集 其实就是连通块的一个变形题目,一般的连通块题目要我们求的是连通个数,或者能不能到达,这里反过来问了。 首先,我们用dfs也是可以做到的,在dfs中统计每一个连通块的个数,然后用乘…...
WPS二次开发系列:如何使用WPS返回的FileUri
作者持续关注 WPS二次开发专题系列,持续为大家带来更多有价值的WPS开发技术细节,如果能够帮助到您,请帮忙来个一键三连,更多问题请联系我(QQ:250325397) 目录 什么是FileUri 在SDK中的使用场景 打开文档时…...
python删除一个文件夹所有文件
在Python中,可以使用os模块来删除一个文件夹中的所有文件,但保留文件夹本身。以下是一个简单的例子: import osdef delete_files_in_folder(folder_path):for filename in os.listdir(folder_path):file_path os.path.join(folder_path, fi…...
overflow:hidden对解决外边距塌陷的个人理解
外边距塌陷: 子元素的上外边距大于父元素的上外边距,导致边距折叠,取两者之间最大值,即子元素外边距,导致父元素上外边距失效。 解决办法:在父元素样式添加overflow:hidden;或者border:1px solid black;(不…...
【linux软件基础知识】- 文件的概念:Linux 中的文件
Linux 中的文件 在 Linux 中,文件是存储在存储设备(例如硬盘驱动器或固态驱动器)上的数据项的集合。 文件被组织为字节序列,并由文件系统中的唯一名称来标识。 以下是 Linux 中文件的一些关键特征: 字节序列:Linux 中的文件被视为字节序列。 每个字节可以表示一个字符…...
Context capture/Pix4Dmapper/AutoCAD/CASS/EPS软件的安装流程与使用方法;土方量计算;无人机摄影测量数据处理
目录 专题一 无人机摄影测量技术应用现状及其发展 专题二 基本原理和关键技术讲解 专题三 无人机影像外业数据获取 专题四 数据处理环境建立与软件熟悉 专题五 GNSS数据土方量计算 专题六 基于无人机影像数据的正射影像制作 专题七 基于无人机影像数据的三维模型制作 专…...
算法系列之堆排序实践哪家强
1.概念 堆排序是一种树形选择排序,是对简单选择排序的有效改进和优化。 堆(heap),这里所说的堆是数据结构中的堆(对应于算法),而不是内存模型中的堆(数据存储形式,还比如:栈&#…...
01-win10安装Qt5
Qt5安装教程 下载Qt5官网下载(下载很慢)镜像网站下载(有些版本没有资源)迅雷下载(推荐)百度网盘下载(推荐)安装Qt5下载Qt5 官网下载(下载很慢) 【注意】:官网下载非常慢,没有镜像下载时常20+ Qt 官网有一个专门的资源下载网站,所有的开发环境和相关工具都可以从这…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
