利用预训练模型和迁移学习打造智能狗门
引言
在深度学习的世界里,预训练模型和迁移学习是两个强大的概念,它们允许我们利用已有的模型和知识来解决新的问题。在本博客中,我们将探索如何使用预训练的模型来创建一个智能狗门,这个系统将能够识别狗并允许它们进入,同时将其他动物或物体排除在外。
预训练模型的力量
预训练模型是已经在大量数据上训练过的神经网络,它们通常在特定任务上表现出色,比如图像分类。这些模型可以在不同的任务上进行微调,而不需要从头开始训练整个网络,这大大节省了时间和资源。
加载预训练模型
在Keras中,许多流行的预训练模型都可以轻松加载。例如,我们可以使用VGG16模型,它已经在ImageNet数据集上进行了训练,该数据集包含了1000个类别的图像。
from tensorflow.keras.applications import VGG16# 加载预训练的VGG16模型
model = VGG16(weights="imagenet")
预训练模型的结构
VGG16模型是一个深度卷积神经网络,它具有多个卷积层和全连接层。预训练模型的输入图像大小通常是224x224像素,输出是一个包含1000个类别概率的向量。
model.summary()
数据准备
为了使用预训练模型进行迁移学习,我们需要准备输入数据,使其符合模型的输入要求。这包括调整图像大小和归一化。
from tensorflow.keras.preprocessing import image as image_utils
from tensorflow.keras.applications.vgg16 import preprocess_inputdef load_and_process_image(image_path):# 加载图像并调整大小image = image_utils.load_img(image_path, target_size=(224, 224))# 将图像转换为数组image = image_utils.img_to_array(image)# 添加一个维度,以模拟批量大小为1的情况image = image.reshape(1, 224, 224, 3)# 预处理图像以匹配ImageNet数据集image = preprocess_input(image)return image
迁移学习
迁移学习是一种技术,它允许我们将在一个任务上训练的模型应用到另一个任务上。在本例中,我们将使用VGG16模型对新图像进行分类,但我们将只使用模型的输出层,并且重新训练这部分以适应我们的新数据集。
预处理图像
在进行预测之前,我们需要对新图像进行与ImageNet数据集相同的预处理。
processed_image = load_and_process_image("data/doggy_door_images/brown_bear.jpg")
进行预测
使用预训练模型对图像进行预测,并将输出概率解码为可读的类别。
from tensorflow.keras.applications.vgg16 import decode_predictionsdef readable_prediction(image_path):# 显示图像show_image(image_path)# 加载并预处理图像image = load_and_process_image(image_path)# 进行预测predictions = model.predict(image)# 打印可读的预测结果print('Predicted:', decode_predictions(predictions, top=3))readable_prediction("data/doggy_door_images/happy_dog.jpg")
智能狗门逻辑
我们将使用模型的预测结果来控制一个虚拟的狗门。如果模型预测图像为狗,门将打开允许狗进入;如果预测为猫,门将保持关闭;对于其他类别,门也不会打开。
def doggy_door(image_path):show_image(image_path)image = load_and_process_image(image_path)preds = model.predict(image)# 根据预测的类别编号决定是否开门if 151 <= np.argmax(preds) <= 268:print("Doggy come on in!")elif 281 <= np.argmax(preds) <= 285:print("Kitty stay inside!")else:print("You're not a dog! Stay outside!")# 测试智能狗门
doggy_door("data/doggy_door_images/brown_bear.jpg")
doggy_door("data/doggy_door_images/happy_dog.jpg")
doggy_door("data/doggy_door_images/sleepy_cat.jpg")
结语
通过使用预训练的VGG16模型和迁移学习,我们能够快速创建一个智能狗门系统。这种方法不仅节省了训练时间,还提高了模型的性能。随着深度学习社区的不断发展,预训练模型和迁移学习将在未来的机器学习项目中扮演越来越重要的角色。
相关文章:
利用预训练模型和迁移学习打造智能狗门
引言 在深度学习的世界里,预训练模型和迁移学习是两个强大的概念,它们允许我们利用已有的模型和知识来解决新的问题。在本博客中,我们将探索如何使用预训练的模型来创建一个智能狗门,这个系统将能够识别狗并允许它们进入…...

常用Linux命令详细总结
一、文档编辑、过滤、查看命令 1、cp 复制文件和目录 -a 复制文件并保持文件属性 -d 若源文件为链接文件,则复制链接文件属性而非文件本身 -i 覆盖文件前提示,如果不要提示,在命令前加上\ -r 递归复制,通常用于目录的复制 …...

基于SpringBoot的竹宣非遗宣传网站
摘要 随着互联网的普及和数字化时代的到来,竹编等非物质文化遗产的保护与传承面临新的机遇和挑战。该研究旨在使用SpringBoot后端框架与Vue前端框架,构建一个竹编非遗宣传网站,通过丰富的展示形式和交互体验,提升公众对竹编这一非…...

怎么清理服务器的C盘?
有时候我们经常会遇到C盘被占满的情况,C盘被占满的原因有很多,下面我们就来分析下有可能导致C盘占满的原因: 第一种情况:中毒 打开服务器任务管理器选择进程,并且勾选显示所有用户的进程,我们可以点击映像…...

动态规划----股票买卖问题(详解)
目录 一.买卖股票的最佳时机: 二.买卖股票的最佳时机含冷冻期: 三.买卖股票的最佳时期含⼿续费: 四.买卖股票的最佳时机III: 五.买卖股票的最佳时机IV: 买卖股票的最佳时机问题介绍:动态规划买卖股票的最佳时机是一个经典的…...
Unity射线检测不到MeshCollider的原因
当我们构建的模型是单面模型时,就会出现射线检测不到MeshCollider的问题,对于渲染,我们可以Cull Off来实现双面渲染,而在射线检测时,Unity提供了一个API来控制是否检测背面:Physics.queriesHitBackfaces 案…...

ssrf初步
一,简介 全称:Server-Side Request Forgery(中文:服务器端请求伪造) 攻击者从服务端发起请求,让服务器连接任意外部系统,从而泄露敏感数据。主要利用各种协议的请求伪造,例如php协…...

linux 安装 mangodb 并设置服务开机自启
1、下载 wget http://mosquitto.org/files/source/mosquitto-1.6.8.tar.gz 2、解压 tar -zxvf mosquitto-1.6.8.tar.gz 3、编译安装cd mosquitto-1.6.8 make sudo make install4、在当前目录。进入mosquitto服务文件存放的文件夹 cd service/systemd可以看到3个文件 点击read…...

Virtualbox7.0.10+Ubuntu20.04网络配置
虚拟机部署在服务器上时,需要进行网络配置,使虚拟机和服务器在同网段下,以保证内网的终端可以访问到虚拟机 1. 设置虚拟机 打开虚拟机设置,选择“网络”,将网卡设为桥接网卡 注:设置前,需要先…...

设计模式之服务定位器模式
想象一下,你的Java应用是一座庞大的迷宫,里面藏着无数宝贵的服务宝藏,而你正需要一张精确的藏宝图来指引方向,迅速找到并利用这些宝藏。服务定位器模式,正是这样一张神奇的地图,它帮你动态定位并获取应用中…...

冯喜运:5.12黄金回撤继续上涨,下周原油走势分析
【黄金消息面分析】:本周,黄金市场迎来了自4月中旬以来的最佳单周表现。周五(3月9日),金价攀升至2360.54美元/盎司,涨幅0.62%,而纽约商品交易所6月交割的黄金期货价格上涨1.5%,收报2…...

JavaEE企业级开发中常用的JDK7和JDK8的时间类
JDK7时间类 全世界的时间有一个统一的计算标准 在同一条经线上的时间是一样的 格林威治时间 简称GMT 计算核心 地球自转一天是24小时 太阳直射正好是12小时 但是误差太大 现在用原子钟来代替 用铯原子震动的频率来计算时间,作为世界的标准时间UTC 中国标准时间…...
leetcode 2316.统计无向图中无法互相到达点对数
思路:并查集 其实就是连通块的一个变形题目,一般的连通块题目要我们求的是连通个数,或者能不能到达,这里反过来问了。 首先,我们用dfs也是可以做到的,在dfs中统计每一个连通块的个数,然后用乘…...
WPS二次开发系列:如何使用WPS返回的FileUri
作者持续关注 WPS二次开发专题系列,持续为大家带来更多有价值的WPS开发技术细节,如果能够帮助到您,请帮忙来个一键三连,更多问题请联系我(QQ:250325397) 目录 什么是FileUri 在SDK中的使用场景 打开文档时…...
python删除一个文件夹所有文件
在Python中,可以使用os模块来删除一个文件夹中的所有文件,但保留文件夹本身。以下是一个简单的例子: import osdef delete_files_in_folder(folder_path):for filename in os.listdir(folder_path):file_path os.path.join(folder_path, fi…...

overflow:hidden对解决外边距塌陷的个人理解
外边距塌陷: 子元素的上外边距大于父元素的上外边距,导致边距折叠,取两者之间最大值,即子元素外边距,导致父元素上外边距失效。 解决办法:在父元素样式添加overflow:hidden;或者border:1px solid black;(不…...
【linux软件基础知识】- 文件的概念:Linux 中的文件
Linux 中的文件 在 Linux 中,文件是存储在存储设备(例如硬盘驱动器或固态驱动器)上的数据项的集合。 文件被组织为字节序列,并由文件系统中的唯一名称来标识。 以下是 Linux 中文件的一些关键特征: 字节序列:Linux 中的文件被视为字节序列。 每个字节可以表示一个字符…...
Context capture/Pix4Dmapper/AutoCAD/CASS/EPS软件的安装流程与使用方法;土方量计算;无人机摄影测量数据处理
目录 专题一 无人机摄影测量技术应用现状及其发展 专题二 基本原理和关键技术讲解 专题三 无人机影像外业数据获取 专题四 数据处理环境建立与软件熟悉 专题五 GNSS数据土方量计算 专题六 基于无人机影像数据的正射影像制作 专题七 基于无人机影像数据的三维模型制作 专…...
算法系列之堆排序实践哪家强
1.概念 堆排序是一种树形选择排序,是对简单选择排序的有效改进和优化。 堆(heap),这里所说的堆是数据结构中的堆(对应于算法),而不是内存模型中的堆(数据存储形式,还比如:栈&#…...

01-win10安装Qt5
Qt5安装教程 下载Qt5官网下载(下载很慢)镜像网站下载(有些版本没有资源)迅雷下载(推荐)百度网盘下载(推荐)安装Qt5下载Qt5 官网下载(下载很慢) 【注意】:官网下载非常慢,没有镜像下载时常20+ Qt 官网有一个专门的资源下载网站,所有的开发环境和相关工具都可以从这…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...