当前位置: 首页 > news >正文

C++笔试强训day20

目录

1.经此一役小红所向无敌

2.连续子数组最大和

3.非对称之美


1.经此一役小红所向无敌

链接

简单模拟即可。

需要注意的是:

除完之后有无余数,若有,则还可以再挨一次打。

#include <iostream>
using namespace std;
#define int long long
int a, h, b, k;
signed main() {cin >> a >> h >> b >> k;int sum = 0;int cnt1 = h / b;int cnt2 = k / a;if (h % b != 0)cnt1++;if (k % a != 0)cnt2++;int cnt = min(cnt1, cnt2);sum += cnt * (a + b);if (cnt1 == cnt2)cout << sum << endl;else if (cnt1 > cnt2){sum += a * 10;cout << sum << endl;}else if (cnt1 < cnt2){sum += b * 10;cout << sum << endl;}return 0;
}

2.连续子数组最大和

链接

一道线性dp问题,最主要的是找出dp所表示的含义:

dp[i], 以i为结尾,可以表示的最大数值。

#include <iostream>
using namespace std;const int N = 2e5 + 10;
int dp[N];
int v[N];
int main() {int n;cin >> n;for(int i = 1; i <= n; ++i)cin >> v[i]; for(int i = 1; i <= n; ++i)dp[i] = max(dp[i - 1] + v[i], v[i]);int ret = -101;for(int i = 1; i <= n; ++i)ret = max(dp[i], ret);cout << ret << endl;return 0;
}

填完表后,遍历一遍表中的数,取出最大值即可。

由于,因此可以让 ret 初始化为 -101。 

3.非对称之美

链接

我认为这就是一道数学分析找规律题,暴力强解复杂度太高,易超时,解不出来。

但是这个规律也不好找:

#include <iostream>
#include <string>
using namespace std;
int n;
string s;
int fun()
{// 1. 判断是否全都是相同字符bool flag = false;for (int i = 1; i < n; i++){if (s[i] != s[0]){flag = true;break;}}if (flag == false) return 0;// 2. 判断本⾝是否是回⽂flag = true;int left = 0, right = n - 1;while (left < right){if (s[left] == s[right]){left++;right--;}else{flag = false;break;}}if (flag) return n - 1;else return n;
}
int main()
{cin >> s;n = s.size();cout << fun() << endl;return 0;
}

若字符全相同,则返回0。

若从0和n - 1往中间遍历,存在不相同,即可直接break返回 n (个数)。

若全相同,则返回 n - 1。

即这时个对称数,但是如果你取除第一个或最后一个外的所有字符,即可组成非对称。

题目有要求要最大,所以为 n - 1。

相关文章:

C++笔试强训day20

目录 1.经此一役小红所向无敌 2.连续子数组最大和 3.非对称之美 1.经此一役小红所向无敌 链接 简单模拟即可。 需要注意的是&#xff1a; 除完之后有无余数&#xff0c;若有&#xff0c;则还可以再挨一次打。 #include <iostream> using namespace std; #define in…...

【PHP【实战项目】系统性教学】——使用最精简的代码完成用户的登录与退出

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…...

Linux下的常用基本指令

基本指令 前言一、ls 指令语法功能常用选项举例注意要点关于拼接关于 -a关于文件ls与/的联用ls与根目录ls与任意文件夹ls与常用选项与路径 ls -d与ls -ldls与ll 二、pwd命令语法功能常用选项注意要点window与Linux文件路径的区别家目录 三、cd 指令语法功能举例注意要点cd路径.…...

phpstorm环境配置与应用

在 PhpStorm 中配置 PHP 开发环境及进行一些常用的应用设置涉及以下几个主要步骤&#xff1a; ### 1. 安装和激活 PhpStorm - **下载安装**: 访问 JetBrains 官网下载最新版本的 PhpStorm 安装包&#xff0c;然后按照提示进行安装。 - **激活**: 启动 PhpStorm&#xff0c;你可…...

【Qt 学习笔记】Qt常用控件 | 布局管理器 | 水平布局Horizontal Layout

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Qt常用控件 | 布局管理器 | 水平布局Horizontal Layout 文章编号&…...

Hive Aggregation 聚合函数

Hive Aggregation 聚合函数 基础聚合 增强聚合...

Unity 性能优化之GPU Instancing(五)

提示&#xff1a;仅供参考&#xff0c;有误之处&#xff0c;麻烦大佬指出&#xff0c;不胜感激&#xff01; 文章目录 前言一、GPU Instancing使用方法二、使用GPU Instancing的条件三、GPU Instancing弊端四、注意五、检查是否成功总结 前言 GPU Instancing也是一种Draw call…...

LeetCode 138. 随机链表的复制

目录 1.原题链接&#xff1a; 2.结点拆分&#xff1a; 代码实现&#xff1a; 3.提交结果&#xff1a; 4.读书分享&#xff1a; 1.原题链接&#xff1a; 138. 随机链表的复制 2.结点拆分&#xff1a; ①.拷贝各个结点&#xff0c;连接在原结点后面&#xff1b; ②.处…...

【PC微信小程序点不动处理方法】

描述 在使用电脑小程序抓包的时候发现原来能点的小程序今天不能点了。就是原来有个输入车牌号的输入框点击会出现车牌号键盘&#xff0c;现在不行了&#xff0c;经过卸载安装发现不是微信的问题&#xff0c;是WeChatAppEx.exe 的bug。早期使用的是不带ex的都没有问题升级以后&…...

量化交易:日内网格交易策略.md

哈喽&#xff0c;大家好&#xff0c;我是木头左&#xff01; 本文将详细介绍日内网格交易策略的原理&#xff0c;并结合Python代码示例&#xff0c;展示如何在掘金平台上实现这一策略。 策略原理 日内网格交易策略的核心思想是在一天的交易时间内&#xff0c;通过设置多个买卖…...

Ubuntu 20.04在Anaconda虚拟环境中配置PyQt4

一、创建一个虚拟环境 1 创建一个python2.7的虚拟环境&#xff1a; conda create -n pyqt4 numpy matplotlib python2.72 在环境中安装几个需要的包&#xff1a; pip install Theano pip install python-opencv3.4.0.14 pip install qdarkstyle pip install dominate二、在主…...

charts3D地球--添加航线

要在地球视角下画出海运路线图 方案 添加 globl 地球创建geo地理坐标系创建canvas对象用于承载地图世界地图this.worldChart //初始化canvas节点let cav document.createElement("canvas");this.$echarts.registerMap("world", geoJson);this.worldCha…...

变色龙还是树懒:揭示大型语言模型在知识冲突中的行为

你是知识变色龙还是树懒?我今天在ICLR学到一个很有趣的术语,叫做证据顺序(order of evidence)。 大模型RAG处理知识冲突的探讨: 在检索增强生成(Retrieval-Augmented Generation, RAG)的过程中,技术团队会将检索到的前几名文档作为证据,并提示(prompt)给大型语言模型(Large La…...

Android OpenMAX(四)OMX Core

假设我们已经写好了所有的OMX组件,有vdec、venc、adec、aenc,接下来问题来了,我们应该如何管理这些组件呢(创建、销毁)?这一篇文章我们向上一层学习OMX Core提供的标准API。 OMX Core代码位于 OMX_Core.h OMX Core在OpenMAX IL架构中的位置位于IL Client与实际的OMX组件之…...

【Linux】轻量级应用服务器如何开放端口 -- 详解

一、测试端口是否开放 1、测试程序 TCP demo 程序&#xff08;可参考&#xff1a;【Linux 网络】网络编程套接字 -- 详解-CSDN博客&#xff09; 2、测试工具 Windows - cmd 窗口 输入命令&#xff1a;telnet [云服务器的公网ip] [port] 二、腾讯云安全组开放端口 1、安全组设…...

git如何查看密码

git查看用户名、邮箱 git config user.name git config user.email 也可以在系统&#xff0c;用户文件夹下面 gitconfig查看 通常无法查看git密码&#xff0c;运行以下命令 git config credential.helper 查看储存的方式&#xff0c;如果是manage 或manage-store则说明是…...

redis脑裂问题

1. 前言 脑裂就是指在主从集群中&#xff0c;同时有两个主节点&#xff0c;它们都能接收写请求。而脑裂最直接的影响&#xff0c;就是客户端不知道应该往哪个主节点写入数据&#xff0c;结果就是不同的客户端会往不同的主节点上写入数据。而且&#xff0c;严重的话&#xff0c;…...

日本率先研发成功6G设备,刺痛了谁?为何日本能率先突破?

日本率先研发成功6G设备&#xff0c;无线数据速率是5G的百倍&#xff0c;这让日本方面兴奋莫名&#xff0c;毕竟日本在科技方面从1990年代以来太缺少突破的创新了&#xff0c;那么日本为何如今在6G技术上能率先突破呢&#xff1f; 日本在1980年代末期达到顶峰&#xff0c;它的科…...

SpringBoot自动配置源码解析+自定义Spring Boot Starter

SpringBootApplication Spring Boot应用标注 SpringBootApplication 注解的类说明该类是Spring Boot 的主配置类&#xff0c;需要运行该类的main方法进行启动 Spring Boot 应用 SpringBootConfiguration 该注解标注表示标注的类是个配置类 EnableAutoConfiguration 直译&#…...

Kafka 环境配置与使用总结

# 部署教程参考 # 官方教程: https://kafka.apache.org/quickstart # 单机部署kafka参考: https://blog.csdn.net/u013416034/article/details/123875299 # 集群部署kafka参考: # https://blog.csdn.net/zhangzjx/article/details/123679453 # https://www.cnblogs.com/And…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西&#xff0c;但是如果把三者放在一起&#xff0c;它们之间到底什么关系&#xff1f;又有什么联系呢&#xff1f;我不是很明白&#xff01;&#xff01;&#xff01; 就比如说&#xff1a; 沙箱&#…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

boost::filesystem::path文件路径使用详解和示例

boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类&#xff0c;封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解&#xff0c;包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...