AI 情感聊天机器人工作之旅 —— 与复读机问题的相遇与别离
前言:先前在杭州的一家大模型公司从事海外闲聊机器人产品,目前已经离职,文章主要讨论在闲聊场景下遇到的“复读机”问题以及一些我个人的思考和解决方案。文章内部已经对相关公司和人员信息做了去敏,如仍涉及到机密等情况,可删除。
meta 开源 Llama2 后,我们立马将基座模型从 Llama1 更换为了 Llama2。很重要的一个原因在于 Llama2 的 context length 是 4k,是 Llama1 的 2 倍,对于日益增长的角色人设 prompt 来说,2k 已经不满足线上产品使用。
在将 base 模型从 Llama1 “升级”到 Llama2 后出现了单句重复问题,该问题也被业界定义为“复读机问题”——模型会在一轮回复中不断重复某一相同或语义相似的子句,直到 max_new_tokens(最大输出长度)。
PS:Llama1 有没有这个问题已经无法追溯,其一,当时还没有在 sentry 查看日志链路的习惯;其二,产品和社区没有反馈该类问题,产品妹子们更多地是反馈多轮重复问题——模型在多轮对话中重复相同的内容。
由于当时尚处于 8 月份,vLLM 框架的集成以及后续将部署服务代码改造成 continuous batching 都仍处于“未来时”,模型直接使用 HuggingFace Transformers 库加载并流式输出。?B 大小的模型,其推理速度在 max_new_tokens = 500 场景下很容易超时(20 秒),即使不超时,也会占用消费者 worker 大量时间,出现消息队列拥堵,因此 sentry 报警的信息非常多,让我们注意到了这个问题。此外,社区与产品也反馈了该问题。
从 9 月 8 日开始,我参与到 BUG 的修复工作中。面对该问题,第一反应是训练数据中是否存在大量的重复,导致模型在训练过程中学到了这种重复的模式?检查了相关的训练数据集,的确发现存在大量重复的语句,用户在不断地说着同样或类似的话,而角色回复的内容也有大量的短语级的重复,再加上我们训练时,只训练角色回复且多 epoch,会强化这一倾向。论文《Understanding In-Context Learning from Repetitions》对表面特征在文本生成中的作用进行了定量研究,并根据经验确定 token 共现强化的存在,任何两个 token 构成一个 token 强化循环,在该循环中,任何两个 token 都可以通过多次重复出现而形成紧密联系。这是一种基于上下文共现强化两个 token 之间关系的原理。
但我们对训练数据集做了去重操作,但上线后仍然存在该问题。也就是说,复读机问题并不是在 SFT 阶段引入,base 模型本身就已经存在该问题,即使我们将 SFT 训练数据集的重复以及相近的数据都过滤,仍然有一定概率会触发。
陆陆续续地尝试了一些方法:
-
2023 年 9 月 08 日:对比解码的方式不能解决单句生成重复的问题,反而会因为避免生成重复 token 而选择一些“奇怪”的 token,从而生成更加离谱的回复
-
2023 年 9 月 11 日:另一种方法是在 SFT 阶段用高质量数据继续训练,用更多的“高质量”数据集训练更长时间后,在 42 个单句短语重复的 bad case 上测了下,可以解掉 22 个。

9 月 11 日得出的结论和研究员 4 的结论相同,通过更多的训练数据来让模型 cover 更多 context 下的输出,避免预训练阶段存在的问题(特定 context 下输出分布有问题,导致存在一个子串,反复生成该子串可以提高 PPL,例如成语接龙中“为所欲为”可以不停地循环)。 -
具体时间已经忘记,当时想到可以调整 prompt 格式。
- 依据:当前轮的输出会受到历史对话(尤其是最近几轮)的影响,结合大模型的 ICL 能力(多轮对话的格式和 ICL 非常相像,instruction + 多轮用户-角色对,类似 few-shot),推测是 prompt 的影响。
- 做法:以格式化的方式组织历史对话内容,但该方法与 SFT 阶段的 template 不一致,自研模型在输出时会出现意想不到的现象。后续尝试对历史对话进行总结,然后将总结拼接到 instruction,该方案可以有效地缓解单句重复问题,但成本较高(需要有额外的总结模型)。
- 本质:仍然是训练数据的问题,使得模型在特定 context 下加剧“复读机”问题。调整 prompt 格式,只是改变了这个 context,使模型有可能跳出这个重复的循环,可以作为一种后处理的方式。例如,当模型的生成出现“复读机”问题时,走 prompt 总结 + 重新生成。
后续,随着预训练组推出更多的 continued pretraining 模型,问题已经得到缓解,更多的持续预训练填补了 Llama2 本身预训练不充分的问题(Llama2 距离 Llama1 发布的时间太短,reddit 上也有不少反映 Llama2 复读机问题的帖子。
相关文章:
AI 情感聊天机器人工作之旅 —— 与复读机问题的相遇与别离
前言:先前在杭州的一家大模型公司从事海外闲聊机器人产品,目前已经离职,文章主要讨论在闲聊场景下遇到的“复读机”问题以及一些我个人的思考和解决方案。文章内部已经对相关公司和人员信息做了去敏,如仍涉及到机密等情况…...
如何使用ArcGIS Pro进行选房分析
无论是研究城市规划布局还是寻找理想的住房,都需要综合考虑购物、医疗、教育和休闲等多方面因素,此时我们的GIS软件就可以派上用场了,这里为大家介绍一下如何使用 ArcGIS Pro 进行选房分析,希望能对你有所帮助。 数据来源 教程所…...
android图标底色问题,debug与release不一致
背景 在android 8(sdk 26)之前的版本,直接使用图片文件作为图标,开发时比较容易控制图标,但是不同的安卓定制版本就不容易统一图标风格了。 在android 8及之后的版本,图标对应的是ic_launcher.xml&#x…...
如何提高自己的全局视野?
以下是一些可以帮助提高全局视野的方法: 1. 广泛学习不同领域知识:包括但不限于技术相关的各个领域、业务知识、行业动态等,拓宽知识面。 2. 参与大型项目:积极投身到复杂的、规模较大的项目中,在实践中感受和理解系…...
element ui的确认提示框文字样式修改
修改确认提示框文字样式修改,使用message属性修改: 例: js代码: this.$msgbox({title: 确定要删除吗?,message: this.$createElement(p, null, [this.$createElement(span, { style: color: red }, 该素材一旦删除,…...
Typescript 哲学 - ts模块使用最佳实践
ts的作用域 默认是全局(global),这也是为什么在 两个ts文件声明同一个变量报错变量名冲突,解决方法是使某个文件以模块的形式存在(文件顶层使用 export 、import ) In TypeScript, just as in ECMAScript 2…...
自动驾驶决策规划——坐标转换
以下内容来自b站up主忠厚老实的老王,视频链接:自动驾驶决策规划算法序章 总纲与大致目录_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1hP4y1p7es/?spm_id_from333.999.0.0&vd_sourced36e625f376908cfa88ef5ecf2fb0ed8侵删。 决策规划算法…...
信创应用软件之邮箱
信创应用软件之邮箱 文章目录 信创应用软件之邮箱采用信创邮箱的必要性信创邮箱采购需求国产邮箱业务形态国产邮箱代表性品牌CoremailRichmail安宁eyouUMail拓波 邮件安全的发展阶段 采用信创邮箱的必要性 邮箱是天然的数据存储空间,党政和央国企客户在使用过程中存…...
TriCore: Architecture
说明 本文是 英飞凌 架构文档 TriCore TC162P core archiecture Volume 1 of 2 (infineon.com) 的笔记,稍作整理方便查阅,错误之处,还请指正,谢谢 :) 1. Architecture 2. General Purpose & System Register 名词列表&#…...
16进制与不同进制之间计算加减乘除的比较快的方法
方法: 1.加分、减法: 将所有的进制的数转成目标进制的数,然后按位加。 如 0x123 0x1234 0x1357 2.乘法、除法: 将所有的进制的数转成二进制数,然后进行移位。 如 0x123456 乘 32(十进制)…...
责任链模式:原理与实现解析,及其应用场景代入
责任链模式的作用:复用和扩展,在实际的项目开发中比较常用,特别是框架开发中,我们可以利用它们来提供框架的扩展点,能够让框架的使用者在不修改框架源码的情况下,基于扩展点定制化框架的功能。 这里主要介…...
从心理学角度看,GPT 对人有什么影响?
开启个性化AI体验:深入了解GPT的无限可能 导言 GPT 与我们日常生活的融合标志着技术进步的重大飞跃,为提高效率和创新提供了前所未有的机遇。然而,当我们与这些智能系统日益紧密地交织在一起时,探索它们对个人产生的细微的心理影响…...
【C语言/数据结构】栈:从概念到两种存储结构的实现
目录 一、栈的概念 二、栈的两种实现方式 1.顺序表实现栈 2.链表实现栈 三、栈的顺序存储结构及其实现 1.栈的声明 2.栈的初始化 3.栈的销毁 4.栈的压栈 5.栈的弹栈 6.栈的判空 7.返回栈顶元素 8.返回栈的长度 四、栈的链式存储结构及其实现 1.栈的声明 2.栈的…...
47. UE5 RPG 实现角色死亡效果
在上一篇文章中,我们实现了敌人受到攻击后会播放受击动画,并且还给角色设置了受击标签。并在角色受击时,在角色身上挂上受击标签,在c里,如果挂载了此标签,速度将降为0 。 受击有了,接下来我们将…...
C语言/数据结构——每日一题(环形链表)
一.前言 今天在力扣上刷到一道链表题——环形链表https://leetcode.cn/problems/linked-list-cycle 想着和大家们分享一下。让我们直接开始今天的分享吧。、 二.正文 1.1题目描述 1.2题目分析 这道题是想让我们做出分析,该链表是不是带环链表,如果是…...
vue:网页icon无法显示
logo文件放在public文件夹下,在html里设置icon。 本地源码运行后发现网页icon无法显示我们设置的logo,而是显示了浏览器默认icon。 这个问题不需要解决,部署后网页icon显示就正常了。...
电脑设置在哪里打开?Window与Mac双系统操作指南
随着科技的不断发展,电脑已经成为我们日常生活和工作中不可或缺的一部分。然而,对于许多初学者来说,如何找到并熟悉电脑的设置界面可能是一个挑战。特别是对于那些同时使用Windows和Mac双系统的用户来说,更是需要一篇详尽的指南来…...
【linux】海量小文件的存储方案
在介绍海量文件存储之前,需要先介绍一下常见的系统里面文件是如何存储的 文件inode 在linux下,每个文件或者目录,都会分配一个inode(index node),它不存储具体的文件内容,而是记录该文件的基础信息。每个inode大小一…...
【SpringBoot整合系列】SpringBoot整合RabbitMQ-基本使用
目录 SpringtBoot整合RabbitMQ1.依赖2.配置RabbitMQ的7种模式1.简单模式(Hello World)应用场景代码示例 2.工作队列模式(Work queues)应用场景代码示例手动 ack代码示例 3.订阅模式(Publish/Subscribe)应用…...
MySQL————创建存储过程函数
存储过程使用大纲 有参数传递 delimiter $$ 声明一个名称为get_student_introduce create procedure add_student_infor( in p_userName VARCHAR(20),in p_phone VARCHAR(11),in p_sex char(2),in p_introduce VARCHAR(255)) 开始操作 BEGIN 撰写真正在操作DMLDQL都行 INSE…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
