【C++】每日一题 17 电话号码的字母组合
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。
给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。
可以使用回溯法来解决这个问题。首先定义一个映射关系将数字与字母对应起来,然后使用回溯算法来生成所有可能的组合。
回溯算法是一种通过不断尝试各种可能性来解决问题的方法,通常用于求解组合、排列、子集等问题。它通过深度优先搜索的方式探索问题的所有解空间,并在搜索过程中进行剪枝,从而有效地找到满足特定条件的解。
下面是回溯算法的一般步骤:
选择路径: 从问题的初始状态出发,按照某种规则选择一个候选解的路径,即在问题的解空间中前进一步。
探索路径: 在当前选择的路径上继续向前探索,查找可能的解或部分解。
约束条件: 在探索过程中,判断当前路径是否满足问题的约束条件。如果不满足,则放弃该路径,回退到上一步,继续探索其他路径。
标记状态: 在进入下一层递归之前,通常需要修改问题的状态,以便记录当前路径的选择或处理过程。
回退路径: 当探索到底或者无法继续前进时,需要回退到上一层,撤销当前路径的选择,返回上一层继续探索其他路径。
结束条件: 当搜索到达问题的解空间的边界或者满足特定条件时,结束搜索,得到最终的解或者部分解。
回溯算法的核心思想是通过不断地选择、探索、回退和标记状态,逐步地搜索问题的解空间,直到找到所有满足条件的解或者确定无解。
#include <iostream>
#include <vector>
#include <string>using namespace std;// 定义数字与字母的映射关系
vector<string> keypad = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};// 回溯算法生成所有可能的组合
void backtrack(vector<string>& result, string& digits, string current, int index) {// 如果当前组合的长度等于输入数字的长度,则将当前组合加入结果集if (index == digits.length()) {result.push_back(current);return;}// 获取当前数字对应的字母集合string letters = keypad[digits[index] - '0'];// 遍历当前数字对应的每一个字母,进行回溯for (char letter : letters) {current.push_back(letter); // 添加当前字母到当前组合中backtrack(result, digits, current, index + 1); // 递归处理下一个数字current.pop_back(); // 回溯,撤销当前字母}
}vector<string> letterCombinations(string digits) {vector<string> result;if (digits.empty()) return result; // 如果输入为空,则直接返回空结果集string current = "";backtrack(result, digits, current, 0); // 调用回溯算法生成所有可能的组合return result;
}int main() {string digits = "23";vector<string> combinations = letterCombinations(digits);cout << "所有可能的字母组合:" << endl;for (const string& combination : combinations) {cout << combination << " ";}cout << endl;return 0;
}
时间空间复杂度分析
假设输入数字串的长度为 ( n ),每个数字对应的字母集合的平均长度为 ( m )。
时间复杂度分析:
回溯算法:
对于每个数字,我们都需要尝试其对应的所有字母,这需要 ( O(m) ) 的时间。
由于有 ( n ) 个数字,因此总共的时间复杂度为 ( O(m^n) )。
结果集合生成:
生成结果集合的过程中,需要将所有可能的组合添加到结果集中,这也需要 ( O(m^n) ) 的时间。
综合起来,整个算法的时间复杂度为 ( O(m^n) )。
空间复杂度分析:
递归调用栈:
递归调用栈的深度最多为输入数字串的长度 ( n ),因此需要额外的 ( O(n) ) 的空间。
结果集合:
存储结果集合所需的空间取决于结果的数量。最坏情况下,结果数量为 ( O(m^n) ),因此需要 ( O(m^n) ) 的空间。
综合起来,整个算法的空间复杂度为 ( O(m^n) )。
总的来说,这个算法的时间和空间复杂度都是指数级别的,随着输入规模 ( n ) 和每个数字对应的字母集合的大小 ( m ) 的增加,其运行时间和所需空间将急剧增加。
相关文章:

【C++】每日一题 17 电话号码的字母组合
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 可以使用回溯法来解决这个问题。首先定义一个映射关系将数字与字母对应起来…...
vue预览PDF文件的几种方法
1.使用iframe标签预览PDF文件 1.1页面结构 html <iframe:src"fileUrl"id"iframeBox"ref"iframeRef"frameborder"0"style"width: 100%; height: 800px"></iframe>1.2 js代码 export default {data() {return {…...

深度学习入门到放弃系列 - 阿里云人工智能平台PAI部署开源大模型chatglm3
通过深度学习入门到放弃系列 - 魔搭社区完成开源大模型部署调用 ,大概掌握了开源模型的部署调用,但是魔搭社区有一个弊端,关闭实例后数据基本上就丢了,本地的电脑无法满足大模型的配置,就需要去租用一些高性价比的GPU机…...

GPT-4o,AI实时视频通话丝滑如人类,Plus功能免费可用
不开玩笑,电影《她》真的来了。 OpenAI最新旗舰大模型GPT-4o,不仅免费可用,能力更是横跨听、看、说,丝滑流畅毫无延迟,就像在打一个视频电话。 现场直播的效果更是炸裂: 它能感受到你的呼吸节奏…...

【优选算法】——Leetcode——202—— 快乐数
目录 1.题目 2. 题⽬分析: 3.简单证明: 4. 解法(快慢指针): 算法思路: 补充知识:如何求⼀个数n每个位置上的数字的平⽅和。 总结概括 5.代码实现 1.C语言 2.C 1.题目 202. 快乐数 编写一个算法来…...
华大基因CEPO-尹烨说学习与生活
怎么去面对生活和事业中的不确定性? 尹烨说,人类能够对抗不确定性的唯一的办法是,去让自己充电。 主持人问他,“和你同年的也有很多人,他们也可能也在学习,你怎么就能够脱颖而出呢?” 他说&am…...

C#中json数据序列化和反序列化的最简单方法(C#对象和字符串的相互转换)
文章目录 将C#对象转换为json字符串Newtonsoft模块的安装用Newtonsoft将对象转换为json字符串 将json字符串转换为C#对象 将C#对象转换为json字符串 本介绍将基于C#中的第三方库Newtonsoft进行,因此将分为Newtonsoft模块的安装和使用两部分。该模块的优势在于只需要…...
logback 日志脱敏
工具类 CustomLogbackPatternLayoutEncoder.java import ch.qos.logback.classic.encoder.PatternLayoutEncoder;public class CustomLogbackPatternLayoutEncoder extends PatternLayoutEncoder {/*** 正则替换规则*/private LogbackReplaces replaces;/*** 使用自定义 MyLog…...

element-ui的表单中,输入框、级联选择器的长度设置
使用<el-col>控制输入框的长度 <el-form-item label"姓名" label-width"80px"><el-col :span"15"><el-input v-model"form.name" autocomplete"off"></el-input></el-col></el-form…...

深入了解 npm:Node.js 包管理工具详解
文章目录 一、npm 基本概念1.1 什么是 npm?1.2 package.json 文件 二、npm 常用命令2.1 初始化项目2.2 安装依赖2.2.1 安装单个包2.2.2 全局安装包2.2.3 安装开发依赖 2.3 移除依赖2.4 更新依赖2.5 查看已安装的包2.6 发布包 三、npm 高级用法3.1 使用 npm scripts3…...

记一次跨域问题
线上跨域问题,在自己配置确认没问题下,要及时找运维看看是不是nginx配置问题。 两个方面: 项目代码 nginx配置 SpringBoot 解决跨域问题的 5 种方案! SpringBoot解决CORS跨域问题 SpringBoot-实现CORS跨域原理及解决方案...

第9章 负载均衡集群日常维护
一个设计良好的高可用负载均衡集群,交付使用以后并不能一劳永逸。欲使其高效、稳定、持续对外服务,日常维护必不可少。 对于高可用负载均衡集群来说,有两种类型的维护形式:常规性维护与突发性维护。突发性维护一般指故障处理&…...

鸿蒙内核源码分析(消息封装篇) | 剖析LiteIpc(上)进程通讯内容
基本概念 LiteIPC是OpenHarmony LiteOS-A内核提供的一种新型IPC(Inter-Process Communication,即进程间通信)机制,为轻量级进程间通信组件,为面向服务的系统服务框架提供进程间通信能力,分为内核实现和用户…...

Charger之三动态电源路径管理(DPPM)
-----本文简介----- 主要内容包括: 领资料:点下方↓名片关注回复:粉丝群 硬件之路学习笔记公众号 Charger的动态电源路径管理(DPPM) 前篇内容:①电池管理IC(Charger)了解一下&…...
大数据模型的选择与安装
大数据模型的选择和安装是一个复杂的过程,涉及多个因素,包括模型的通用能力、特定任务的性能、数据效率、评估完整性、成本以及部署的硬件和软件环境。以下是一些关于大数据模型选择与安装的考虑因素和步骤: 选择大数据模型的考虑因素&#…...
React 之 lazy(延迟加载)(十七)
lazy 能够让你在组件第一次被渲染之前延迟加载组件的代码。 在组件外部调用 lazy,以声明一个懒加载的 React 组件: import { lazy } from react;const MarkdownPreview lazy(() > import(./MarkdownPreview.js)); 配合 Suspense 实现懒加载组件 //App.js imp…...
Node.js -- 会话控制
文章目录 1. 会话介绍2. cookie 相关操作2.1 cookie 设置2.2 删除 cookie2.3 获取cookie 3. session 相关操作4. cookie 和session 的区别5. 补充知识 -- CSRF跨站请求伪造6. token 1. 会话介绍 所谓会话控制就是对会话进行控制 HTTP是一种无状态的协议,它没有办法…...

做抖店不能踩的几个坑,新手要照做,老玩家要听劝~
我是王路飞。 很多人都说抖店的运营很简单,选选品、对接一下达人,就可以坐等店铺出单了。 这话骗骗还没开店的小白也就得了,但凡做抖店超过一个月的,都不会相信这句话。 细心耐心是做抖店最基本的态度。 拿到一个好结果的前提…...

【Kibana】快速上手Kibana平台(KQL)
文章目录 快速使用Kibana平台常用查询语句KQL基本查询覆合查询模糊查询 目前市面上大部分的公司的日志系统都是使用ELK系统,因此我们进行工作必须得掌握Kibana平台的基本使用,这里主要说明怎么“快速使用Kibana平台”以及记录一些常用的“KQL语言”。 快…...

全方位入门git-慕课网 笔记
目录 【上传github忽略某些文件】【配置用户名和邮箱】【想要删除不需要的文件时如何进行操作】【想要给文件重命名如何操作】【想要移动文件到其他位置时如何操作】【文件有变化时,如何查看前后变化】【操作失误的情况下如何实现一键还原】【不再追踪时如何实现撤销…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...