当前位置: 首页 > news >正文

【C++】每日一题 17 电话号码的字母组合

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。

给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。

在这里插入图片描述
可以使用回溯法来解决这个问题。首先定义一个映射关系将数字与字母对应起来,然后使用回溯算法来生成所有可能的组合。

回溯算法是一种通过不断尝试各种可能性来解决问题的方法,通常用于求解组合、排列、子集等问题。它通过深度优先搜索的方式探索问题的所有解空间,并在搜索过程中进行剪枝,从而有效地找到满足特定条件的解。

下面是回溯算法的一般步骤:

选择路径: 从问题的初始状态出发,按照某种规则选择一个候选解的路径,即在问题的解空间中前进一步。

探索路径: 在当前选择的路径上继续向前探索,查找可能的解或部分解。

约束条件: 在探索过程中,判断当前路径是否满足问题的约束条件。如果不满足,则放弃该路径,回退到上一步,继续探索其他路径。

标记状态: 在进入下一层递归之前,通常需要修改问题的状态,以便记录当前路径的选择或处理过程。

回退路径: 当探索到底或者无法继续前进时,需要回退到上一层,撤销当前路径的选择,返回上一层继续探索其他路径。

结束条件: 当搜索到达问题的解空间的边界或者满足特定条件时,结束搜索,得到最终的解或者部分解。

回溯算法的核心思想是通过不断地选择、探索、回退和标记状态,逐步地搜索问题的解空间,直到找到所有满足条件的解或者确定无解。

#include <iostream>
#include <vector>
#include <string>using namespace std;// 定义数字与字母的映射关系
vector<string> keypad = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};// 回溯算法生成所有可能的组合
void backtrack(vector<string>& result, string& digits, string current, int index) {// 如果当前组合的长度等于输入数字的长度,则将当前组合加入结果集if (index == digits.length()) {result.push_back(current);return;}// 获取当前数字对应的字母集合string letters = keypad[digits[index] - '0'];// 遍历当前数字对应的每一个字母,进行回溯for (char letter : letters) {current.push_back(letter); // 添加当前字母到当前组合中backtrack(result, digits, current, index + 1); // 递归处理下一个数字current.pop_back(); // 回溯,撤销当前字母}
}vector<string> letterCombinations(string digits) {vector<string> result;if (digits.empty()) return result; // 如果输入为空,则直接返回空结果集string current = "";backtrack(result, digits, current, 0); // 调用回溯算法生成所有可能的组合return result;
}int main() {string digits = "23";vector<string> combinations = letterCombinations(digits);cout << "所有可能的字母组合:" << endl;for (const string& combination : combinations) {cout << combination << " ";}cout << endl;return 0;
}

时间空间复杂度分析

假设输入数字串的长度为 ( n ),每个数字对应的字母集合的平均长度为 ( m )。

时间复杂度分析:
回溯算法:
对于每个数字,我们都需要尝试其对应的所有字母,这需要 ( O(m) ) 的时间。
由于有 ( n ) 个数字,因此总共的时间复杂度为 ( O(m^n) )。
结果集合生成:
生成结果集合的过程中,需要将所有可能的组合添加到结果集中,这也需要 ( O(m^n) ) 的时间。
综合起来,整个算法的时间复杂度为 ( O(m^n) )。

空间复杂度分析:
递归调用栈:
递归调用栈的深度最多为输入数字串的长度 ( n ),因此需要额外的 ( O(n) ) 的空间。
结果集合:
存储结果集合所需的空间取决于结果的数量。最坏情况下,结果数量为 ( O(m^n) ),因此需要 ( O(m^n) ) 的空间。
综合起来,整个算法的空间复杂度为 ( O(m^n) )。

总的来说,这个算法的时间和空间复杂度都是指数级别的,随着输入规模 ( n ) 和每个数字对应的字母集合的大小 ( m ) 的增加,其运行时间和所需空间将急剧增加。

相关文章:

【C++】每日一题 17 电话号码的字母组合

给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 可以使用回溯法来解决这个问题。首先定义一个映射关系将数字与字母对应起来…...

vue预览PDF文件的几种方法

1.使用iframe标签预览PDF文件 1.1页面结构 html <iframe:src"fileUrl"id"iframeBox"ref"iframeRef"frameborder"0"style"width: 100%; height: 800px"></iframe>1.2 js代码 export default {data() {return {…...

深度学习入门到放弃系列 - 阿里云人工智能平台PAI部署开源大模型chatglm3

通过深度学习入门到放弃系列 - 魔搭社区完成开源大模型部署调用 &#xff0c;大概掌握了开源模型的部署调用&#xff0c;但是魔搭社区有一个弊端&#xff0c;关闭实例后数据基本上就丢了&#xff0c;本地的电脑无法满足大模型的配置&#xff0c;就需要去租用一些高性价比的GPU机…...

GPT-4o,AI实时视频通话丝滑如人类,Plus功能免费可用

不开玩笑&#xff0c;电影《她》真的来了。 OpenAI最新旗舰大模型GPT-4o&#xff0c;不仅免费可用&#xff0c;能力更是横跨听、看、说&#xff0c;丝滑流畅毫无延迟&#xff0c;就像在打一个视频电话。 现场直播的效果更是炸裂&#xff1a; 它能感受到你的呼吸节奏&#xf…...

【优选算法】——Leetcode——202—— 快乐数

目录 1.题目 2. 题⽬分析: 3.简单证明&#xff1a; 4. 解法&#xff08;快慢指针&#xff09;&#xff1a; 算法思路&#xff1a; 补充知识&#xff1a;如何求⼀个数n每个位置上的数字的平⽅和。 总结概括 5.代码实现 1.C语言 2.C 1.题目 202. 快乐数 编写一个算法来…...

华大基因CEPO-尹烨说学习与生活

怎么去面对生活和事业中的不确定性&#xff1f; 尹烨说&#xff0c;人类能够对抗不确定性的唯一的办法是&#xff0c;去让自己充电。 主持人问他&#xff0c;“和你同年的也有很多人&#xff0c;他们也可能也在学习&#xff0c;你怎么就能够脱颖而出呢&#xff1f;” 他说&am…...

C#中json数据序列化和反序列化的最简单方法(C#对象和字符串的相互转换)

文章目录 将C#对象转换为json字符串Newtonsoft模块的安装用Newtonsoft将对象转换为json字符串 将json字符串转换为C#对象 将C#对象转换为json字符串 本介绍将基于C#中的第三方库Newtonsoft进行&#xff0c;因此将分为Newtonsoft模块的安装和使用两部分。该模块的优势在于只需要…...

logback 日志脱敏

工具类 CustomLogbackPatternLayoutEncoder.java import ch.qos.logback.classic.encoder.PatternLayoutEncoder;public class CustomLogbackPatternLayoutEncoder extends PatternLayoutEncoder {/*** 正则替换规则*/private LogbackReplaces replaces;/*** 使用自定义 MyLog…...

element-ui的表单中,输入框、级联选择器的长度设置

使用<el-col>控制输入框的长度 <el-form-item label"姓名" label-width"80px"><el-col :span"15"><el-input v-model"form.name" autocomplete"off"></el-input></el-col></el-form…...

深入了解 npm:Node.js 包管理工具详解

文章目录 一、npm 基本概念1.1 什么是 npm&#xff1f;1.2 package.json 文件 二、npm 常用命令2.1 初始化项目2.2 安装依赖2.2.1 安装单个包2.2.2 全局安装包2.2.3 安装开发依赖 2.3 移除依赖2.4 更新依赖2.5 查看已安装的包2.6 发布包 三、npm 高级用法3.1 使用 npm scripts3…...

记一次跨域问题

线上跨域问题&#xff0c;在自己配置确认没问题下&#xff0c;要及时找运维看看是不是nginx配置问题。 两个方面&#xff1a; 项目代码 nginx配置 SpringBoot 解决跨域问题的 5 种方案&#xff01; SpringBoot解决CORS跨域问题 SpringBoot-实现CORS跨域原理及解决方案...

第9章 负载均衡集群日常维护

一个设计良好的高可用负载均衡集群&#xff0c;交付使用以后并不能一劳永逸。欲使其高效、稳定、持续对外服务&#xff0c;日常维护必不可少。 对于高可用负载均衡集群来说&#xff0c;有两种类型的维护形式&#xff1a;常规性维护与突发性维护。突发性维护一般指故障处理&…...

鸿蒙内核源码分析(消息封装篇) | 剖析LiteIpc(上)进程通讯内容

基本概念 LiteIPC是OpenHarmony LiteOS-A内核提供的一种新型IPC&#xff08;Inter-Process Communication&#xff0c;即进程间通信&#xff09;机制&#xff0c;为轻量级进程间通信组件&#xff0c;为面向服务的系统服务框架提供进程间通信能力&#xff0c;分为内核实现和用户…...

Charger之三动态电源路径管理(DPPM)

-----本文简介----- 主要内容包括&#xff1a; 领资料&#xff1a;点下方↓名片关注回复&#xff1a;粉丝群 硬件之路学习笔记公众号 Charger的动态电源路径管理&#xff08;DPPM&#xff09; 前篇内容&#xff1a;①电池管理IC&#xff08;Charger&#xff09;了解一下&…...

大数据模型的选择与安装

大数据模型的选择和安装是一个复杂的过程&#xff0c;涉及多个因素&#xff0c;包括模型的通用能力、特定任务的性能、数据效率、评估完整性、成本以及部署的硬件和软件环境。以下是一些关于大数据模型选择与安装的考虑因素和步骤&#xff1a; 选择大数据模型的考虑因素&#…...

React 之 lazy(延迟加载)(十七)

lazy 能够让你在组件第一次被渲染之前延迟加载组件的代码。 在组件外部调用 lazy&#xff0c;以声明一个懒加载的 React 组件: import { lazy } from react;const MarkdownPreview lazy(() > import(./MarkdownPreview.js)); 配合 Suspense 实现懒加载组件 //App.js imp…...

Node.js -- 会话控制

文章目录 1. 会话介绍2. cookie 相关操作2.1 cookie 设置2.2 删除 cookie2.3 获取cookie 3. session 相关操作4. cookie 和session 的区别5. 补充知识 -- CSRF跨站请求伪造6. token 1. 会话介绍 所谓会话控制就是对会话进行控制 HTTP是一种无状态的协议&#xff0c;它没有办法…...

做抖店不能踩的几个坑,新手要照做,老玩家要听劝~

我是王路飞。 很多人都说抖店的运营很简单&#xff0c;选选品、对接一下达人&#xff0c;就可以坐等店铺出单了。 这话骗骗还没开店的小白也就得了&#xff0c;但凡做抖店超过一个月的&#xff0c;都不会相信这句话。 细心耐心是做抖店最基本的态度。 拿到一个好结果的前提…...

【Kibana】快速上手Kibana平台(KQL)

文章目录 快速使用Kibana平台常用查询语句KQL基本查询覆合查询模糊查询 目前市面上大部分的公司的日志系统都是使用ELK系统&#xff0c;因此我们进行工作必须得掌握Kibana平台的基本使用&#xff0c;这里主要说明怎么“快速使用Kibana平台”以及记录一些常用的“KQL语言”。 快…...

全方位入门git-慕课网 笔记

目录 【上传github忽略某些文件】【配置用户名和邮箱】【想要删除不需要的文件时如何进行操作】【想要给文件重命名如何操作】【想要移动文件到其他位置时如何操作】【文件有变化时&#xff0c;如何查看前后变化】【操作失误的情况下如何实现一键还原】【不再追踪时如何实现撤销…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...