当前位置: 首页 > news >正文

力扣127.单词接龙讲解

距离上一次刷题已经过去了.........嗯............我数一一下............整整十天,今天再来解一道算法题

由于这段时间准备简历,没咋写博客。。今天回来了!!!!!!!!!!!!!!!!

话不多说,看题:

题目:

字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列 beginWord -> s1 -> s2 -> ... -> sk

  • 每一对相邻的单词只差一个字母。
  •  对于 1 <= i <= k 时,每个 si 都在 wordList 中。注意, beginWord 不需要在 wordList 中。
  • sk == endWord

给你两个单词 beginWord 和 endWord 和一个字典 wordList ,返回 从 beginWord 到 endWord 的 最短转换序列 中的 单词数目 。如果不存在这样的转换序列,返回 0 。

示例 1:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
输出:5
解释:一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog", 返回它的长度 5。

示例 2:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
输出:0
解释:endWord "cog" 不在字典中,所以无法进行转换。

提示:

  • 1 <= beginWord.length <= 10
  • endWord.length == beginWord.length
  • 1 <= wordList.length <= 5000
  • wordList[i].length == beginWord.length
  • beginWordendWord 和 wordList[i] 由小写英文字母组成
  • beginWord != endWord
  • wordList 中的所有字符串 互不相同

嘶。。。。太难了,不会。。。。 

猝!!!!! 

 

正片开始:

解题思路: 

这道题可以使用广度优先搜索(BFS)算法来解决。BFS 算法从 beginWord 开始,逐层向外扩展,直到找到 endWord。以下是如何使用 BFS 算法解决这道题的思路:

  1. 使用队列 queue 来存储待访问的单词。
  2. 使用集合 visited 来记录已访问过的单词,避免重复访问。
  3. 初始化层数 level 为 1。
  4. 将 beginWord 加入队列 queue,并将 beginWord 加入集合 visited
  5. 循环执行以下步骤,直到队列 queue 为空:
    • 将队列 queue 中的所有单词出队。
    • 对于每个出队的单词 currentWord
      • 如果 currentWord 等于 endWord,则找到最短转换序列,返回层数 level
      • 否则,获取 currentWord 的所有相邻单词 neighbors
      • 对于每个相邻单词 neighbor
        • 如果 neighbor 未被访问过,则将其加入队列 queue 和集合 visited
    • 将层数 level 加 1。
  6. 如果 BFS 结束后仍未找到 endWord,则返回 0。

具体代码实现:

import java.util.*;public class WordLadder {public int ladderLength(String beginWord, String endWord, List<String> wordList) {// 如果字典中不存在 endWord,则返回 0if (!wordList.contains(endWord)) {return 0;}// 使用队列进行广度优先搜索(BFS)Queue<String> queue = new LinkedList<>();queue.offer(beginWord);// 使用集合记录已访问过的单词,避免重复访问Set<String> visited = new HashSet<>();visited.add(beginWord);// 层数,从 1 开始int level = 1;while (!queue.isEmpty()) {int size = queue.size();// 当前层的单词全部出队for (int i = 0; i < size; i++) {String currentWord = queue.poll();// 如果当前单词等于 endWord,则找到最短转换序列,返回层数if (currentWord.equals(endWord)) {return level;}// 遍历当前单词的相邻单词List<String> neighbors = getNeighbors(currentWord, wordList);for (String neighbor : neighbors) {// 如果相邻单词未被访问过,则将其加入队列和 visited 集合if (!visited.contains(neighbor)) {queue.offer(neighbor);visited.add(neighbor);}}}// 层数加 1level++;}// 如果 BFS 结束后仍未找到 endWord,则返回 0return 0;}// 获取当前单词的相邻单词private List<String> getNeighbors(String word, List<String> wordList) {List<String> neighbors = new ArrayList<>();for (String candidate : wordList) {int diffCount = 0;// 比较两个单词,计算不同字符的数量for (int i = 0; i < word.length(); i++) {if (word.charAt(i) != candidate.charAt(i)) {diffCount++;}}// 如果不同字符的数量为 1,则 candidate 是相邻单词if (diffCount == 1) {neighbors.add(candidate);}}return neighbors;}
}

时间复杂度: 

噗噗噗..........

这时间复杂度比我命还长啊。。。。。。。。。。。。。。。。。。。。。

=========================================================================

这道题使用广度优先搜索(BFS)算法,其时间复杂度为 O(V + E),其中:

  • V 是单词列表中的单词数量(即顶点数)
  • E 是单词列表中单词之间的转换关系数量(即边数)

在最坏的情况下,我们需要遍历整个单词列表,并且每个单词与其他所有单词都存在转换关系。因此,时间复杂度为 O(V^2)。

然而,在实际情况下,单词列表中的单词通常只与少数其他单词存在转换关系。因此,时间复杂度通常会更接近 O(V + E)。

总的来说,这道题的 时间复杂度为 O(V + E),在最坏的情况下为 O(V^2)。

 

总结 

这道题要求找出从一个单词到另一个单词的最短转换序列,转换规则是每次只能改变一个字母,且转换后的单词必须在给定的单词列表中。

我们可以使用广度优先搜索(BFS)算法来解决这道题。BFS 算法从起始单词开始,逐层向外扩展,直到找到目标单词。

 

 

 

相关文章:

力扣127.单词接龙讲解

距离上一次刷题已经过去了.........嗯............我数一一下............整整十天&#xff0c;今天再来解一道算法题 由于这段时间准备简历&#xff0c;没咋写博客。。今天回来了&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&…...

latex笔记

双列排版&#xff0c;右端margin不对齐怎么解决 如下图这种情况&#xff0c; 解决方法&#xff1a; 在文档开头引入ragged2e包 \usepackage{ragged2e}然后在子章节的开头添加 \justifying\subsection{camouflaged object detection based on coarse-to-fine strategy} \just…...

秋招算法——AcWing101——拦截导弹

文章目录 题目描述思路分析实现源码分析总结 题目描述 思路分析 目前是有一个笨办法&#xff0c;就是创建链表记录每一个最长下降子序列所对应的节点的链接&#xff0c;然后逐个记录所有结点的访问情况&#xff0c;直接所有节点都被访问过。这个方法不是很好&#xff0c;因为需…...

IDEA不能创建新项目和新模块

问题&#xff1a; IDEA不管是创建新项目还是新模块都创建不成功&#xff0c;会报如下图错误 解决方案&#xff1a; 在电脑设置里搜索 “防火墙和网络保护” &#xff0c;打开如下图所示 找到你所安装的IDEA&#xff0c;更改设置&#xff0c;选中IDEA 最后&#xff0c;确定&am…...

WebRTC 的核心:RTCPeerConnection

WebRTC 的核心&#xff1a;RTCPeerConnection WebRTC 的核心&#xff1a;RTCPeerConnection创建 RTCPeerConnection 对象RTCPeerConnection 与本地音视频数据绑定媒体协商ICE什么是 Candidate&#xff1f;收集 Candidate交换 Candidate尝试连接 SDP 与 Candidate 消息的互换远端…...

LeetCode hot100-39-N

101. 对称二叉树给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。做不出来哇&#xff0c;递归一生之敌 普通的对一棵树的递归遍历根本没办法只接比较左子树的左和右子树的右这样来比较&#xff0c;所以这题比较巧妙的是把这棵树当做两棵树一样去遍历比较。 官方…...

NumPy常用操作

目录 一:简介 二:NumPy 常用操作 三:总结 一:简介 是一个开源的Python库,它为Python提供了强大的多维数组对象和用于处理这些数组的函数。NumPy的核心是ndarray,它是一个高效的多维数组容器,用于存储和处理大规模的数据。NumPy还提供了许多数学函数,用于数组之间的操…...

学习笔记——字符串(单模+多模+练习题)

单模匹配 Brute Force算法&#xff08;暴力&#xff09; 算法思想 母串和模式串字符依次配对&#xff0c;如果配对成功则继续比较后面位置是否相同&#xff0c;如果出现匹配不成功的位置&#xff0c;则j&#xff08;模式串当前的位置&#xff09;从头开始&#xff0c;i&…...

DOT + graphviz 轻松画图

GraphViz&#xff1a;2 DOT语法和相关应用_graphviz dot-CSDN博客 图可视化之Graphviz - 知乎 Graphviz 是由AT&T Research、Lucent Bell实验室开源的可视化图形工具&#xff0c;可以很方便的用来绘制结构化的图形网络。具体地&#xff0c;其使用一种名为dot语言的DSL来编…...

使用Vue调用ColaAI Plus大模型,实现聊天(简陋版)

首先去百度文心注册申请自己的api 官网地址&#xff1a;LuckyCola 注册点开个人中心 查看这个文档自己申请一个ColaAI Plus定制增强大模型API | LuckyColahttps://luckycola.com.cn/public/docs/shares/api/colaAi.html来到vue的页面 写个样式 <template><Header …...

Unity使用sherpa-onnx实现离线语音合成

sherpa-onnx https://github.com/k2-fsa/sherpa-onnx 相关dll和lib库拷进Unity&#xff0c;官方示例代码稍作修改 using SherpaOnnx; using System; using System.IO; using System.Runtime.InteropServices; using UnityEngine;public class TTS : MonoBehaviour {public st…...

Elasticsearch入门基础和集群部署

Elasticsearch入门基础和集群部署 简介基础概念索引&#xff08;Index&#xff09;类型&#xff08;Type&#xff09;&#xff08;逐步弃用&#xff09;文档&#xff08;Document&#xff09;字段&#xff08;Field&#xff09;映射&#xff08;Mapping&#xff09;分片&#x…...

12、24年--信息系统治理——IT治理

主要考选择题,2分左右,案例、论文涉及概率不大,需要认证读课本原文。 1、IT治理基础 IT治理是描述组织采用有效的机制对信息技术和数据资源开发利用,平衡信息化发展和数字化转型过程中的风险,确保实现组织的战略目标的过程。 1.1 IT治理的驱动因素 1)存在很多问题: 信…...

Electron学习笔记(三)

文章目录 相关笔记笔记说明 五、界面1、获取 webContents 实例&#xff08;1&#xff09;通过窗口对象的 webContent 属性获取 webContent 实例&#xff1a;&#xff08;2&#xff09;获取当前激活窗口的 webContents 实例&#xff1a;&#xff08;3&#xff09;在渲染进程中获…...

【Redis】Redis键值存储

大家好&#xff0c;我是白晨&#xff0c;一个不是很能熬夜&#xff0c;但是也想日更的人。如果喜欢这篇文章&#xff0c;点个赞&#x1f44d;&#xff0c;关注一下&#x1f440;白晨吧&#xff01;你的支持就是我最大的动力&#xff01;&#x1f4aa;&#x1f4aa;&#x1f4aa…...

C++系统编程篇——Linux初识(系统安装、权限管理,权限设置)

(1)linux系统的安装 双系统---不推荐虚拟机centos镜像&#xff08;可以使用&#xff09;云服务器/轻量级云服务器&#xff08;强烈推荐&#xff09; ①云服务器&#xff08;用xshell连接&#xff09; ssh root公网IP 然后输入password ①添加用户&#xff1a; addus…...

No Cortex-M SW Device Found

将DIO和CLK管脚调换一下...

提升写作效率的秘密武器:一个资深编辑的AI写作体验

有句话说:“写作是一项你坐在打字机前流血的工作。”而如今,各类生成式软件的涌现似乎打破了写作这一古老的艺术形式壁垒。过去,作家们独自在书桌前冥思苦想,如今,一款名为“玲珑AI工具”的ai写作助手正悄然改变着文案写作行业的创作生态,成为提升写作效率的秘密武器。 在传统…...

Python sort() 和 sorted() 的区别应用实例详解

大家好&#xff0c;今天针对 Python 中 sort() 和 sorted() 之间的区别&#xff0c;来一个实例详细解读。sort — 顾名思义就是排序的意思&#xff0c;它可以接收的对象为可迭代的数据类型。今天以列表为例子演示两者的不同点、相同点&#xff0c;以及其中一些常用的高级参数使…...

七、Redis三种高级数据结构-HyperLogLog

Redis HyperLogLog是用来做基数统计的算法&#xff0c;HyperLogLog在优点是&#xff0c;在输入的元素的数量或者体积非常大时&#xff0c;计算基数占用的空间总是固定的、并且非常小。在Redis里每个HyperLogLog键只需花费12KB内存&#xff0c;就可以计算接近 264 个元素的基数。…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...