当前位置: 首页 > news >正文

力扣127.单词接龙讲解

距离上一次刷题已经过去了.........嗯............我数一一下............整整十天,今天再来解一道算法题

由于这段时间准备简历,没咋写博客。。今天回来了!!!!!!!!!!!!!!!!

话不多说,看题:

题目:

字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列 beginWord -> s1 -> s2 -> ... -> sk

  • 每一对相邻的单词只差一个字母。
  •  对于 1 <= i <= k 时,每个 si 都在 wordList 中。注意, beginWord 不需要在 wordList 中。
  • sk == endWord

给你两个单词 beginWord 和 endWord 和一个字典 wordList ,返回 从 beginWord 到 endWord 的 最短转换序列 中的 单词数目 。如果不存在这样的转换序列,返回 0 。

示例 1:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
输出:5
解释:一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog", 返回它的长度 5。

示例 2:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
输出:0
解释:endWord "cog" 不在字典中,所以无法进行转换。

提示:

  • 1 <= beginWord.length <= 10
  • endWord.length == beginWord.length
  • 1 <= wordList.length <= 5000
  • wordList[i].length == beginWord.length
  • beginWordendWord 和 wordList[i] 由小写英文字母组成
  • beginWord != endWord
  • wordList 中的所有字符串 互不相同

嘶。。。。太难了,不会。。。。 

猝!!!!! 

 

正片开始:

解题思路: 

这道题可以使用广度优先搜索(BFS)算法来解决。BFS 算法从 beginWord 开始,逐层向外扩展,直到找到 endWord。以下是如何使用 BFS 算法解决这道题的思路:

  1. 使用队列 queue 来存储待访问的单词。
  2. 使用集合 visited 来记录已访问过的单词,避免重复访问。
  3. 初始化层数 level 为 1。
  4. 将 beginWord 加入队列 queue,并将 beginWord 加入集合 visited
  5. 循环执行以下步骤,直到队列 queue 为空:
    • 将队列 queue 中的所有单词出队。
    • 对于每个出队的单词 currentWord
      • 如果 currentWord 等于 endWord,则找到最短转换序列,返回层数 level
      • 否则,获取 currentWord 的所有相邻单词 neighbors
      • 对于每个相邻单词 neighbor
        • 如果 neighbor 未被访问过,则将其加入队列 queue 和集合 visited
    • 将层数 level 加 1。
  6. 如果 BFS 结束后仍未找到 endWord,则返回 0。

具体代码实现:

import java.util.*;public class WordLadder {public int ladderLength(String beginWord, String endWord, List<String> wordList) {// 如果字典中不存在 endWord,则返回 0if (!wordList.contains(endWord)) {return 0;}// 使用队列进行广度优先搜索(BFS)Queue<String> queue = new LinkedList<>();queue.offer(beginWord);// 使用集合记录已访问过的单词,避免重复访问Set<String> visited = new HashSet<>();visited.add(beginWord);// 层数,从 1 开始int level = 1;while (!queue.isEmpty()) {int size = queue.size();// 当前层的单词全部出队for (int i = 0; i < size; i++) {String currentWord = queue.poll();// 如果当前单词等于 endWord,则找到最短转换序列,返回层数if (currentWord.equals(endWord)) {return level;}// 遍历当前单词的相邻单词List<String> neighbors = getNeighbors(currentWord, wordList);for (String neighbor : neighbors) {// 如果相邻单词未被访问过,则将其加入队列和 visited 集合if (!visited.contains(neighbor)) {queue.offer(neighbor);visited.add(neighbor);}}}// 层数加 1level++;}// 如果 BFS 结束后仍未找到 endWord,则返回 0return 0;}// 获取当前单词的相邻单词private List<String> getNeighbors(String word, List<String> wordList) {List<String> neighbors = new ArrayList<>();for (String candidate : wordList) {int diffCount = 0;// 比较两个单词,计算不同字符的数量for (int i = 0; i < word.length(); i++) {if (word.charAt(i) != candidate.charAt(i)) {diffCount++;}}// 如果不同字符的数量为 1,则 candidate 是相邻单词if (diffCount == 1) {neighbors.add(candidate);}}return neighbors;}
}

时间复杂度: 

噗噗噗..........

这时间复杂度比我命还长啊。。。。。。。。。。。。。。。。。。。。。

=========================================================================

这道题使用广度优先搜索(BFS)算法,其时间复杂度为 O(V + E),其中:

  • V 是单词列表中的单词数量(即顶点数)
  • E 是单词列表中单词之间的转换关系数量(即边数)

在最坏的情况下,我们需要遍历整个单词列表,并且每个单词与其他所有单词都存在转换关系。因此,时间复杂度为 O(V^2)。

然而,在实际情况下,单词列表中的单词通常只与少数其他单词存在转换关系。因此,时间复杂度通常会更接近 O(V + E)。

总的来说,这道题的 时间复杂度为 O(V + E),在最坏的情况下为 O(V^2)。

 

总结 

这道题要求找出从一个单词到另一个单词的最短转换序列,转换规则是每次只能改变一个字母,且转换后的单词必须在给定的单词列表中。

我们可以使用广度优先搜索(BFS)算法来解决这道题。BFS 算法从起始单词开始,逐层向外扩展,直到找到目标单词。

 

 

 

相关文章:

力扣127.单词接龙讲解

距离上一次刷题已经过去了.........嗯............我数一一下............整整十天&#xff0c;今天再来解一道算法题 由于这段时间准备简历&#xff0c;没咋写博客。。今天回来了&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&…...

latex笔记

双列排版&#xff0c;右端margin不对齐怎么解决 如下图这种情况&#xff0c; 解决方法&#xff1a; 在文档开头引入ragged2e包 \usepackage{ragged2e}然后在子章节的开头添加 \justifying\subsection{camouflaged object detection based on coarse-to-fine strategy} \just…...

秋招算法——AcWing101——拦截导弹

文章目录 题目描述思路分析实现源码分析总结 题目描述 思路分析 目前是有一个笨办法&#xff0c;就是创建链表记录每一个最长下降子序列所对应的节点的链接&#xff0c;然后逐个记录所有结点的访问情况&#xff0c;直接所有节点都被访问过。这个方法不是很好&#xff0c;因为需…...

IDEA不能创建新项目和新模块

问题&#xff1a; IDEA不管是创建新项目还是新模块都创建不成功&#xff0c;会报如下图错误 解决方案&#xff1a; 在电脑设置里搜索 “防火墙和网络保护” &#xff0c;打开如下图所示 找到你所安装的IDEA&#xff0c;更改设置&#xff0c;选中IDEA 最后&#xff0c;确定&am…...

WebRTC 的核心:RTCPeerConnection

WebRTC 的核心&#xff1a;RTCPeerConnection WebRTC 的核心&#xff1a;RTCPeerConnection创建 RTCPeerConnection 对象RTCPeerConnection 与本地音视频数据绑定媒体协商ICE什么是 Candidate&#xff1f;收集 Candidate交换 Candidate尝试连接 SDP 与 Candidate 消息的互换远端…...

LeetCode hot100-39-N

101. 对称二叉树给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。做不出来哇&#xff0c;递归一生之敌 普通的对一棵树的递归遍历根本没办法只接比较左子树的左和右子树的右这样来比较&#xff0c;所以这题比较巧妙的是把这棵树当做两棵树一样去遍历比较。 官方…...

NumPy常用操作

目录 一:简介 二:NumPy 常用操作 三:总结 一:简介 是一个开源的Python库,它为Python提供了强大的多维数组对象和用于处理这些数组的函数。NumPy的核心是ndarray,它是一个高效的多维数组容器,用于存储和处理大规模的数据。NumPy还提供了许多数学函数,用于数组之间的操…...

学习笔记——字符串(单模+多模+练习题)

单模匹配 Brute Force算法&#xff08;暴力&#xff09; 算法思想 母串和模式串字符依次配对&#xff0c;如果配对成功则继续比较后面位置是否相同&#xff0c;如果出现匹配不成功的位置&#xff0c;则j&#xff08;模式串当前的位置&#xff09;从头开始&#xff0c;i&…...

DOT + graphviz 轻松画图

GraphViz&#xff1a;2 DOT语法和相关应用_graphviz dot-CSDN博客 图可视化之Graphviz - 知乎 Graphviz 是由AT&T Research、Lucent Bell实验室开源的可视化图形工具&#xff0c;可以很方便的用来绘制结构化的图形网络。具体地&#xff0c;其使用一种名为dot语言的DSL来编…...

使用Vue调用ColaAI Plus大模型,实现聊天(简陋版)

首先去百度文心注册申请自己的api 官网地址&#xff1a;LuckyCola 注册点开个人中心 查看这个文档自己申请一个ColaAI Plus定制增强大模型API | LuckyColahttps://luckycola.com.cn/public/docs/shares/api/colaAi.html来到vue的页面 写个样式 <template><Header …...

Unity使用sherpa-onnx实现离线语音合成

sherpa-onnx https://github.com/k2-fsa/sherpa-onnx 相关dll和lib库拷进Unity&#xff0c;官方示例代码稍作修改 using SherpaOnnx; using System; using System.IO; using System.Runtime.InteropServices; using UnityEngine;public class TTS : MonoBehaviour {public st…...

Elasticsearch入门基础和集群部署

Elasticsearch入门基础和集群部署 简介基础概念索引&#xff08;Index&#xff09;类型&#xff08;Type&#xff09;&#xff08;逐步弃用&#xff09;文档&#xff08;Document&#xff09;字段&#xff08;Field&#xff09;映射&#xff08;Mapping&#xff09;分片&#x…...

12、24年--信息系统治理——IT治理

主要考选择题,2分左右,案例、论文涉及概率不大,需要认证读课本原文。 1、IT治理基础 IT治理是描述组织采用有效的机制对信息技术和数据资源开发利用,平衡信息化发展和数字化转型过程中的风险,确保实现组织的战略目标的过程。 1.1 IT治理的驱动因素 1)存在很多问题: 信…...

Electron学习笔记(三)

文章目录 相关笔记笔记说明 五、界面1、获取 webContents 实例&#xff08;1&#xff09;通过窗口对象的 webContent 属性获取 webContent 实例&#xff1a;&#xff08;2&#xff09;获取当前激活窗口的 webContents 实例&#xff1a;&#xff08;3&#xff09;在渲染进程中获…...

【Redis】Redis键值存储

大家好&#xff0c;我是白晨&#xff0c;一个不是很能熬夜&#xff0c;但是也想日更的人。如果喜欢这篇文章&#xff0c;点个赞&#x1f44d;&#xff0c;关注一下&#x1f440;白晨吧&#xff01;你的支持就是我最大的动力&#xff01;&#x1f4aa;&#x1f4aa;&#x1f4aa…...

C++系统编程篇——Linux初识(系统安装、权限管理,权限设置)

(1)linux系统的安装 双系统---不推荐虚拟机centos镜像&#xff08;可以使用&#xff09;云服务器/轻量级云服务器&#xff08;强烈推荐&#xff09; ①云服务器&#xff08;用xshell连接&#xff09; ssh root公网IP 然后输入password ①添加用户&#xff1a; addus…...

No Cortex-M SW Device Found

将DIO和CLK管脚调换一下...

提升写作效率的秘密武器:一个资深编辑的AI写作体验

有句话说:“写作是一项你坐在打字机前流血的工作。”而如今,各类生成式软件的涌现似乎打破了写作这一古老的艺术形式壁垒。过去,作家们独自在书桌前冥思苦想,如今,一款名为“玲珑AI工具”的ai写作助手正悄然改变着文案写作行业的创作生态,成为提升写作效率的秘密武器。 在传统…...

Python sort() 和 sorted() 的区别应用实例详解

大家好&#xff0c;今天针对 Python 中 sort() 和 sorted() 之间的区别&#xff0c;来一个实例详细解读。sort — 顾名思义就是排序的意思&#xff0c;它可以接收的对象为可迭代的数据类型。今天以列表为例子演示两者的不同点、相同点&#xff0c;以及其中一些常用的高级参数使…...

七、Redis三种高级数据结构-HyperLogLog

Redis HyperLogLog是用来做基数统计的算法&#xff0c;HyperLogLog在优点是&#xff0c;在输入的元素的数量或者体积非常大时&#xff0c;计算基数占用的空间总是固定的、并且非常小。在Redis里每个HyperLogLog键只需花费12KB内存&#xff0c;就可以计算接近 264 个元素的基数。…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...